Home
Class 12
MATHS
If the equation sin theta(sin theta + 2 ...

If the equation `sin theta(sin theta + 2 cos theta )=a` has a real solution then a belongs to the interval

A

`[1/2,infty)`

B

`(-infty,-1/2]`

C

`[-1,1]`

D

`[-1/2,1/2]`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the interval of \( a \) such that the equation \( \sin \theta (\sin \theta + 2 \cos \theta) = a \) has a real solution, we will analyze the expression step by step. ### Step 1: Rewrite the equation We start with the equation: \[ \sin \theta (\sin \theta + 2 \cos \theta) = a \] This can be rewritten as: \[ \sin^2 \theta + 2 \sin \theta \cos \theta = a \] ### Step 2: Use trigonometric identities We can use the identity \( \sin 2\theta = 2 \sin \theta \cos \theta \) to simplify the equation: \[ \sin^2 \theta + \sin 2\theta = a \] ### Step 3: Express \( \sin^2 \theta \) in terms of \( \sin 2\theta \) Using the identity \( \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \), we can substitute: \[ \frac{1 - \cos 2\theta}{2} + \sin 2\theta = a \] Multiplying through by 2 gives: \[ 1 - \cos 2\theta + 2 \sin 2\theta = 2a \] Rearranging yields: \[ \cos 2\theta - 2 \sin 2\theta = 1 - 2a \] ### Step 4: Analyze the expression Let \( x = 2\theta \). Then the equation becomes: \[ \cos x - 2 \sin x = 1 - 2a \] We can express this in the form \( R \sin(x + \phi) = k \), where \( R = \sqrt{1^2 + (-2)^2} = \sqrt{5} \) and \( \tan \phi = -2 \). ### Step 5: Determine the range of \( k \) The maximum and minimum values of \( R \sin(x + \phi) \) are \( R \) and \( -R \): \[ -\sqrt{5} \leq \cos x - 2 \sin x \leq \sqrt{5} \] Thus, we have: \[ -\sqrt{5} \leq 1 - 2a \leq \sqrt{5} \] ### Step 6: Solve for \( a \) Now we solve the inequalities: 1. From \( 1 - 2a \leq \sqrt{5} \): \[ -2a \leq \sqrt{5} - 1 \implies a \geq \frac{1 - \sqrt{5}}{2} \] 2. From \( -\sqrt{5} \leq 1 - 2a \): \[ -\sqrt{5} - 1 \leq -2a \implies 2a \leq 1 + \sqrt{5} \implies a \leq \frac{1 + \sqrt{5}}{2} \] ### Step 7: Combine the results Combining the two inequalities gives: \[ \frac{1 - \sqrt{5}}{2} \leq a \leq \frac{1 + \sqrt{5}}{2} \] ### Final Result Thus, the interval for \( a \) such that the equation has a real solution is: \[ \left[\frac{1 - \sqrt{5}}{2}, \frac{1 + \sqrt{5}}{2}\right] \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL II)|20 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise COMPREHENSIONS I|3 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL II)|16 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos
  • VECTOR

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

If the equation "sin" theta ("sin" theta + 2 "cos" theta) = a has a real solution, then the shortest interval containing 'a', is

The equation "sin"^(4) theta + "cos"^(4) theta = a has a real solution if

If x + cos theta = sin theta has a real solution, then

If y + "cos" theta = "sin" theta has a real solution, then

If the equation sin2 theta+cos2 theta=p has a solution then p cannot be

The equation K-sin theta+cos2 theta=2k-7 possesses a real solution if

The equation K cdot sin theta + cos 2 theta = 2K - 7 possesses a real solution if

cos theta+sin theta=cos2 theta+sin2 theta

The equation 2("cos"^(8)theta - "sin"^(8)theta) "sec" 2 theta =a^(2) has real solution if a lies in the interval

FIITJEE-TRIGONOMETIC EQUATIONS -ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL 1)
  1. If cos 3A +cos 3B+cos 3C=1 then one of the angles of the triangle ABC ...

    Text Solution

    |

  2. Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4...

    Text Solution

    |

  3. If 24 cos^(2)x+8sin 2x cos x +18 cos x+6 sin 2x=15 +10 sin x then gene...

    Text Solution

    |

  4. If the equation sin theta(sin theta + 2 cos theta )=a has a real solut...

    Text Solution

    |

  5. sum(r=1)^n (cos(2r x))/sin(r x+pi/4)=((2sin50 x)/sin(x/2))sin(pi/4-(m ...

    Text Solution

    |

  6. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |

  7. If x1,x2, x3, x4 are the roots of the equation x^4-x^3 sin2 beta+ x^2....

    Text Solution

    |

  8. If |s in x+cos x|=|s in x|+|cos x|(s in x ,cos x!=0) , then in which q...

    Text Solution

    |

  9. The number of distinct solution of cos(x)/(4)=cos(x) in x in [0,24 pi...

    Text Solution

    |

  10. The value of sin^(-1){cot(sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(1...

    Text Solution

    |

  11. The set of all x in (-pi,pi) satisfying |4 sin x-1| lt sqrt(5) is gi...

    Text Solution

    |

  12. If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1)...

    Text Solution

    |

  13. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  14. If cos^(2)x-a|cosx|+b=0 has exactly two solutions in ((-pi)/(2),(3pi)/...

    Text Solution

    |

  15. Number of solutions of the equation cot( theta ) + cot( theta +(pi)/(...

    Text Solution

    |

  16. If x+(1)/(x)=2, the principal value of sin^(-1)x is

    Text Solution

    |

  17. If a sin + b cos (C+x)+b+c =4aThen cot(B)/(2)cot(C )/(2) is equal to

    Text Solution

    |

  18. If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

    Text Solution

    |

  19. Statement -1 |x^(2)-4|+|sinx|=|x^(2)+sinx-4| if x in [2,pi] because ...

    Text Solution

    |

  20. Let the cubic equation x^(3)-ax^(2)+bx-1=0 has only one real root alph...

    Text Solution

    |