Home
Class 12
MATHS
The set of all x in (-pi,pi) satisfying ...

The set of all x in `(-pi,pi)` satisfying `|4 sin x-1| lt sqrt(5)` is given by

A

`((-9pi)/10 , (7pi)/10)`

B

`((-pi)/10 , (3pi)/10)`

C

`((-2pi)/10 , (3pi)/10)`

D

`(-pi , pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |4 \sin x - 1| < \sqrt{5} \) for \( x \) in the interval \( (-\pi, \pi) \), we can follow these steps: ### Step 1: Remove the Absolute Value The expression \( |4 \sin x - 1| < \sqrt{5} \) implies two inequalities: \[ -\sqrt{5} < 4 \sin x - 1 < \sqrt{5} \] ### Step 2: Solve the Inequalities We can break this into two parts: 1. \( 4 \sin x - 1 < \sqrt{5} \) 2. \( 4 \sin x - 1 > -\sqrt{5} \) #### For the first inequality: \[ 4 \sin x - 1 < \sqrt{5} \] Adding 1 to both sides: \[ 4 \sin x < \sqrt{5} + 1 \] Dividing by 4: \[ \sin x < \frac{\sqrt{5} + 1}{4} \] #### For the second inequality: \[ 4 \sin x - 1 > -\sqrt{5} \] Adding 1 to both sides: \[ 4 \sin x > -\sqrt{5} + 1 \] Dividing by 4: \[ \sin x > \frac{-\sqrt{5} + 1}{4} \] ### Step 3: Find the Values of \( \sin x \) Now we need to evaluate the bounds: - Let \( a = \frac{\sqrt{5} + 1}{4} \) - Let \( b = \frac{-\sqrt{5} + 1}{4} \) ### Step 4: Calculate \( a \) and \( b \) Calculating \( a \): \[ a = \frac{\sqrt{5} + 1}{4} \approx \frac{2.236 + 1}{4} \approx \frac{3.236}{4} \approx 0.809 \] Calculating \( b \): \[ b = \frac{-\sqrt{5} + 1}{4} \approx \frac{-2.236 + 1}{4} \approx \frac{-1.236}{4} \approx -0.309 \] ### Step 5: Solve for \( x \) Now we need to find \( x \) such that: \[ -0.309 < \sin x < 0.809 \] ### Step 6: Determine the Angles Using the unit circle: 1. For \( \sin x = 0.809 \): - The angles in \( (-\pi, \pi) \) are approximately \( x \approx \frac{7\pi}{10} \) and \( x \approx -\frac{3\pi}{10} \). 2. For \( \sin x = -0.309 \): - The angles in \( (-\pi, \pi) \) are approximately \( x \approx -\frac{9\pi}{10} \) and \( x \approx \frac{3\pi}{10} \). ### Step 7: Combine the Results The solution set for \( x \) is: \[ x \in \left(-\frac{9\pi}{10}, \frac{7\pi}{10}\right) \] ### Final Answer The set of all \( x \) in \( (-\pi, \pi) \) satisfying \( |4 \sin x - 1| < \sqrt{5} \) is: \[ \boxed{\left(-\frac{9\pi}{10}, \frac{7\pi}{10}\right)} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL II)|20 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise COMPREHENSIONS I|3 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) (LEVEL II)|16 Videos
  • TRIGNOMETRIC RATIOS AND IDENTITIES

    FIITJEE|Exercise All Questions|1 Videos
  • VECTOR

    FIITJEE|Exercise NUMERICAL BASED|4 Videos

Similar Questions

Explore conceptually related problems

The set of all x in ((-pi)/(2),(pi)/(2)) satisfying |4sin x-1|

the set of all x in (-(pi)/(2),(pi)/(2)) satisfying |4sin x-1|=sqrt(5) is givenby

Find the set of all x in (-(pi)/(2),(pi)/(2)) which satisfy | 4 sin x-1| lt sqrt(5)

The set of values of x in (-pi, pi) satisfying the inequation |4"sin" x-1| lt sqrt(5) , is

If the set of all values of x in (-pi/2,pi/2) satisfying |4sinx+sqrt(2\ )+|

The set of all real values of x satisfying sin^(-1)sqrt(x)lt(pi)/(4) , is

The complete set of values of x, x in (-(pi)/(2), pi) satisfying the inequality cos 2x gt |sin x| is :

The number of values of x in [0, 4 pi] satisfying the inequation |sqrt(3)"cos" x - "sin"x|ge2 , is

The sum of all x in [0,pi] which satisfy the equation sin x+(1)/(2)cos x =sin^(2)(x+(pi)/(4)) is - (A) pi/6 (B) (5pi)/6 (C) pi (D) 2pi

The value of x in (0,(pi)/(2)) satisfying the equation,(sqrt(3)-1)/(sin x)+(sqrt(3)+1)/(cos x)=4sqrt(2) is

FIITJEE-TRIGONOMETIC EQUATIONS -ASSIGNMENT PROBLEMS (OBJECTIVE) (LEVEL 1)
  1. If cos 3A +cos 3B+cos 3C=1 then one of the angles of the triangle ABC ...

    Text Solution

    |

  2. Find the value of x which satisfy equation 2 tan^(-1) 2x = sin^(-1).(4...

    Text Solution

    |

  3. If 24 cos^(2)x+8sin 2x cos x +18 cos x+6 sin 2x=15 +10 sin x then gene...

    Text Solution

    |

  4. If the equation sin theta(sin theta + 2 cos theta )=a has a real solut...

    Text Solution

    |

  5. sum(r=1)^n (cos(2r x))/sin(r x+pi/4)=((2sin50 x)/sin(x/2))sin(pi/4-(m ...

    Text Solution

    |

  6. The equation "sin"^(4) x -2 "cos"^(2) x + a^(2) =0 is solvable if

    Text Solution

    |

  7. If x1,x2, x3, x4 are the roots of the equation x^4-x^3 sin2 beta+ x^2....

    Text Solution

    |

  8. If |s in x+cos x|=|s in x|+|cos x|(s in x ,cos x!=0) , then in which q...

    Text Solution

    |

  9. The number of distinct solution of cos(x)/(4)=cos(x) in x in [0,24 pi...

    Text Solution

    |

  10. The value of sin^(-1){cot(sin^(-1)sqrt((2-sqrt(3))/4)+cos^(-1)(sqrt(1...

    Text Solution

    |

  11. The set of all x in (-pi,pi) satisfying |4 sin x-1| lt sqrt(5) is gi...

    Text Solution

    |

  12. If A = 2 tan^(-1) (2 sqrt2 -1) and B = 3 sin^(-1) ((1)/(3)) + sin^(-1)...

    Text Solution

    |

  13. In a triangle ABC ,angle A is greater than B.If the measures of angles...

    Text Solution

    |

  14. If cos^(2)x-a|cosx|+b=0 has exactly two solutions in ((-pi)/(2),(3pi)/...

    Text Solution

    |

  15. Number of solutions of the equation cot( theta ) + cot( theta +(pi)/(...

    Text Solution

    |

  16. If x+(1)/(x)=2, the principal value of sin^(-1)x is

    Text Solution

    |

  17. If a sin + b cos (C+x)+b+c =4aThen cot(B)/(2)cot(C )/(2) is equal to

    Text Solution

    |

  18. If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to

    Text Solution

    |

  19. Statement -1 |x^(2)-4|+|sinx|=|x^(2)+sinx-4| if x in [2,pi] because ...

    Text Solution

    |

  20. Let the cubic equation x^(3)-ax^(2)+bx-1=0 has only one real root alph...

    Text Solution

    |