Home
Class 12
MATHS
Show that points with p.v bar(a)-2bar(b)...

Show that points with p.v `bar(a)-2bar(b)+3bar(c ),-2bar(a)+3bar(b)-bar(c ),4bar(a)-7bar(b)+7bar(c )` are collinear. It is given that vectors `bara,barb,bar c` are non-coplanar.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|32 Videos
  • VECTOR

    FIITJEE|Exercise EXERCISE 1|2 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If bar(a)+lamdabar(b)+3bar(c),-2bar(a)+3bar(b)-4bar(c),bar(a)-3bar(b)+5bar(c) are coplanar, then find value of lamda

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If bar(a)+2bar(b)+3bar(c)=bar(0) then bar(a)xxbar(b)+bar(b)xxbar(c)+bar(c)xxbar(a)=

If the vectors bar(a)+bar(b)+bar(c),bar(a)+lambdabar(b)+2bar(c) and -bar(a)+bar(b)+bar(c) are linearly dependent then lambda is

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

The value of [(bar(a)+2bar(b)-bar(c))(bar(a)-bar(b))(bar(a)-bar(b)-bar(c))] is equal to the box product

(bar(a)+bar(b))xx(bar(a)-bar(b))+(bar(b)-bar(c))xx(bar(b)-bar(c))+(bar(c)+bar(a))(bar(c)-bar(a))=

If bar(c)=3bar(a)-2bar(b) , then prove that [bar(a)bar(b)bar(c)]=0 .

If bar(a),bar(b),bar(c) are non-coplanar vectors.Prove that the four points -bar(a)+4bar(b)-3bar(c) , 3bar(a)+2bar(b)-5bar(c) , -3bar(a)+8bar(b)-5bar(c) , -3bar(a)+2bar(b)+bar(c) are coplanar.