Home
Class 12
MATHS
IF bara,barb,barc are three vectors such...

IF `bara,barb,barc` are three vectors such that each is inclined at an angle `pi/3` with the other two and `|bara|=1,|barb|=2,|barc|=3` then the scalar product of the vectors `2bara+3barb-5barc and 4bara-6barb+10barc` is equal to

A

-334

B

188

C

-522

D

-514

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar product of the vectors \(2\mathbf{a} + 3\mathbf{b} - 5\mathbf{c}\) and \(4\mathbf{a} - 6\mathbf{b} + 10\mathbf{c}\), given that the vectors \(\mathbf{a}\), \(\mathbf{b}\), and \(\mathbf{c}\) are inclined at an angle of \(\frac{\pi}{3}\) with each other and have magnitudes \(|\mathbf{a}| = 1\), \(|\mathbf{b}| = 2\), and \(|\mathbf{c}| = 3\). ### Step-by-Step Solution: 1. **Identify the Magnitudes and Angles:** - \(|\mathbf{a}| = 1\) - \(|\mathbf{b}| = 2\) - \(|\mathbf{c}| = 3\) - The angle between any two vectors is \(\frac{\pi}{3}\). 2. **Calculate the Scalar Product:** The scalar product of two vectors \(\mathbf{x}\) and \(\mathbf{y}\) can be calculated using the formula: \[ \mathbf{x} \cdot \mathbf{y} = |\mathbf{x}| |\mathbf{y}| \cos(\theta) \] where \(\theta\) is the angle between the vectors. 3. **Expand the Scalar Product:** We need to compute: \[ (2\mathbf{a} + 3\mathbf{b} - 5\mathbf{c}) \cdot (4\mathbf{a} - 6\mathbf{b} + 10\mathbf{c}) \] Using the distributive property of the dot product, we have: \[ = 2\mathbf{a} \cdot 4\mathbf{a} + 2\mathbf{a} \cdot (-6\mathbf{b}) + 2\mathbf{a} \cdot 10\mathbf{c} + 3\mathbf{b} \cdot 4\mathbf{a} + 3\mathbf{b} \cdot (-6\mathbf{b}) + 3\mathbf{b} \cdot 10\mathbf{c} - 5\mathbf{c} \cdot 4\mathbf{a} - 5\mathbf{c} \cdot (-6\mathbf{b}) - 5\mathbf{c} \cdot 10\mathbf{c} \] 4. **Calculate Each Term:** - \(2\mathbf{a} \cdot 4\mathbf{a} = 8|\mathbf{a}|^2 = 8 \cdot 1^2 = 8\) - \(2\mathbf{a} \cdot (-6\mathbf{b}) = -12\mathbf{a} \cdot \mathbf{b} = -12 \cdot |\mathbf{a}||\mathbf{b}|\cos\left(\frac{\pi}{3}\right) = -12 \cdot 1 \cdot 2 \cdot \frac{1}{2} = -12\) - \(2\mathbf{a} \cdot 10\mathbf{c} = 20\mathbf{a} \cdot \mathbf{c} = 20 \cdot |\mathbf{a}||\mathbf{c}|\cos\left(\frac{\pi}{3}\right) = 20 \cdot 1 \cdot 3 \cdot \frac{1}{2} = 30\) - \(3\mathbf{b} \cdot 4\mathbf{a} = 12\mathbf{b} \cdot \mathbf{a} = 12 \cdot |\mathbf{b}||\mathbf{a}|\cos\left(\frac{\pi}{3}\right) = 12 \cdot 2 \cdot 1 \cdot \frac{1}{2} = 12\) - \(3\mathbf{b} \cdot (-6\mathbf{b}) = -18|\mathbf{b}|^2 = -18 \cdot 2^2 = -72\) - \(3\mathbf{b} \cdot 10\mathbf{c} = 30\mathbf{b} \cdot \mathbf{c} = 30 \cdot |\mathbf{b}||\mathbf{c}|\cos\left(\frac{\pi}{3}\right) = 30 \cdot 2 \cdot 3 \cdot \frac{1}{2} = 90\) - \(-5\mathbf{c} \cdot 4\mathbf{a} = -20\mathbf{c} \cdot \mathbf{a} = -20 \cdot |\mathbf{c}||\mathbf{a}|\cos\left(\frac{\pi}{3}\right) = -20 \cdot 3 \cdot 1 \cdot \frac{1}{2} = -30\) - \(-5\mathbf{c} \cdot (-6\mathbf{b}) = 30\mathbf{c} \cdot \mathbf{b} = 30 \cdot |\mathbf{c}||\mathbf{b}|\cos\left(\frac{\pi}{3}\right) = 30 \cdot 3 \cdot 2 \cdot \frac{1}{2} = 90\) - \(-5\mathbf{c} \cdot 10\mathbf{c} = -50|\mathbf{c}|^2 = -50 \cdot 3^2 = -450\) 5. **Combine All Terms:** Now, we can combine all these results: \[ 8 - 12 + 30 + 12 - 72 + 90 - 30 + 90 - 450 \] Simplifying this: \[ = 8 - 12 + 30 + 12 - 72 + 90 - 30 + 90 - 450 = 8 - 12 + 12 + 30 - 72 + 90 - 30 + 90 - 450 \] \[ = 8 + 30 + 12 + 90 + 90 - 12 - 72 - 30 - 450 = 8 + 30 + 12 + 90 + 90 - 12 - 72 - 30 - 450 = 8 - 72 - 450 + 180 \] \[ = 8 - 72 - 450 + 180 = -334 \] Thus, the scalar product of the vectors is \(-334\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

bara.[barb+barc)xx(bara+barb+barc)] is equal to

If bara,barb,barc are three vectors, then [bara,barb,barc] is not equal to

lf bara,barb,barc are three unit-vectors such that 3bara + 4barb + 5barc = bar0 , then

[[bara-barb, barb-bara, barc-bara]]=

For any three vectors bara,barb and barc,(bara-barb)[(barb+barc)xx(barc+bara)] is equal to:

Let bara,barb and barc three vectors, Then scalar triple product [bara barb barc] is equal to

If bara,barb barc are three vectors such that bara+barb+barc=0 , where abs(bara)=1,abs(barb)=2,abs(barc)=3 then : bara.barb+barb.barc+barc.bara =

If bara,barb,barc are non-zero, non collinear vectors, then the vectors bara-barb+barc,4bara-7barb-barc and 3bara+6barb+6barc are

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

If bara is perpendicular to barb and barc,|bara|=2,|barb|=3,|barc|=4 and the angle between barb and barc is (2pi)/(3) . then [bara" "barb" " barc] is equal to

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. The component of hati in the direction of vector hati+hatj+2hatk is

    Text Solution

    |

  2. Let a,b and c be distinct non-negative numbers and the vectors ahati+a...

    Text Solution

    |

  3. IF bara,barb,barc are three vectors such that each is inclined at an a...

    Text Solution

    |

  4. bara times (barb times barc) +barb times (barc times bara)+ barc time...

    Text Solution

    |

  5. Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + ...

    Text Solution

    |

  6. If bara barb barc are three nonzero vectors no two of which are collin...

    Text Solution

    |

  7. If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3ha...

    Text Solution

    |

  8. If bara,barb barc and bard are non-zero, non-collinear vectors such th...

    Text Solution

    |

  9. IF barx and bary non zero linearly independent vectors such that |barx...

    Text Solution

    |

  10. If bara,barb and barc be there non-zero vectors, no two of which are c...

    Text Solution

    |

  11. If bara and barb are unit vectors and barc satisfies 2(hata times hatb...

    Text Solution

    |

  12. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  13. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  14. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  15. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  16. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  17. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  18. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  19. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  20. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |