Home
Class 12
MATHS
bara times (barb times barc) +barb times...

`bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb)` equals

A

`3[bara barb barc]`

B

`2[bara barb barc]`

C

`[bara barb barc]`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \text{bara} \times (\text{barb} \times \text{barc}) + \text{barb} \times (\text{barc} \times \text{bara}) + \text{barc} \times (\text{bara} \times \text{barb}) \] This expression involves the cross product of vectors. We can use the vector triple product identity, which states: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] Let's apply this identity step by step to each term in the expression. ### Step 1: Evaluate \(\text{bara} \times (\text{barb} \times \text{barc})\) Using the vector triple product identity: \[ \text{bara} \times (\text{barb} \times \text{barc}) = (\text{bara} \cdot \text{barc}) \text{barb} - (\text{bara} \cdot \text{barb}) \text{barc} \] ### Step 2: Evaluate \(\text{barb} \times (\text{barc} \times \text{bara})\) Again, applying the vector triple product identity: \[ \text{barb} \times (\text{barc} \times \text{bara}) = (\text{barb} \cdot \text{bara}) \text{barc} - (\text{barb} \cdot \text{barc}) \text{bara} \] ### Step 3: Evaluate \(\text{barc} \times (\text{bara} \times \text{barb})\) Applying the vector triple product identity one more time: \[ \text{barc} \times (\text{bara} \times \text{barb}) = (\text{barc} \cdot \text{barb}) \text{bara} - (\text{barc} \cdot \text{bara}) \text{barb} \] ### Step 4: Combine all three results Now, we combine the results from Steps 1, 2, and 3: \[ \begin{align*} & \left[(\text{bara} \cdot \text{barc}) \text{barb} - (\text{bara} \cdot \text{barb}) \text{barc}\right] + \left[(\text{barb} \cdot \text{bara}) \text{barc} - (\text{barb} \cdot \text{barc}) \text{bara}\right] + \left[(\text{barc} \cdot \text{barb}) \text{bara} - (\text{barc} \cdot \text{bara}) \text{barb}\right] \end{align*} \] ### Step 5: Simplify the expression Notice that the terms will cancel out: - The \((\text{bara} \cdot \text{barc}) \text{barb}\) and \(-(\text{barc} \cdot \text{bara}) \text{barb}\) will cancel with the \((\text{barc} \cdot \text{barb}) \text{bara}\) and \(-(\text{barb} \cdot \text{bara}) \text{barc}\). Thus, the entire expression simplifies to: \[ 0 \] ### Final Answer: The value of the expression is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Show that vectors bara times (barb times barc),barb times (barc times bara). barc times (bara times barb) are coplanar.

IF bara times barb = barc and barb times barc=bara then

Let barlamda=bara times (barb +barc), barmu=barb times (barc+bara) and barv=barc times (bara+barb) , Then

If barc=bara times barb and barb=barc times bara then

If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc times bara+vbara times barb then |(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barc)| is equal to

IF barx times barb=barc times barb and barx . bara =0 then barx=

IF OABC is a tetrahedron where O is the origin and A,B and C have respective positions vectors as bara,barb and barc then prove that the circumcentre of the tetrahedron is ((bara)^2(barb times barc)+(barb)^2 (barc times bara)+(barc)^2 (bara times barb))/(2[bara barb barc])

bara,barb,barc,bard are four distinct vectors satisfying the conditions bar a times barb =barc times bard and bara times barc=barb times bard then show that bara.barb+bard.barc ne bard.barb+bara.barc.

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. Let a,b and c be distinct non-negative numbers and the vectors ahati+a...

    Text Solution

    |

  2. IF bara,barb,barc are three vectors such that each is inclined at an a...

    Text Solution

    |

  3. bara times (barb times barc) +barb times (barc times bara)+ barc time...

    Text Solution

    |

  4. Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + ...

    Text Solution

    |

  5. If bara barb barc are three nonzero vectors no two of which are collin...

    Text Solution

    |

  6. If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3ha...

    Text Solution

    |

  7. If bara,barb barc and bard are non-zero, non-collinear vectors such th...

    Text Solution

    |

  8. IF barx and bary non zero linearly independent vectors such that |barx...

    Text Solution

    |

  9. If bara,barb and barc be there non-zero vectors, no two of which are c...

    Text Solution

    |

  10. If bara and barb are unit vectors and barc satisfies 2(hata times hatb...

    Text Solution

    |

  11. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  12. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  13. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  14. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  15. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  16. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  17. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  18. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  19. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  20. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |