Home
Class 12
MATHS
If bara=hati+hatj+hatk, bara.barb=2 and ...

If `bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3hatk` then `barb` is equal to

A

`5hati-4hatj+2hatk`

B

`4hati-5hatj+hatk`

C

`2hati-hatj+hatk`

D

`hati-2hatj-3hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( \mathbf{b} \) given the conditions involving vector \( \mathbf{a} \). ### Step 1: Define the vectors We are given: \[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \] Let \( \mathbf{b} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \). ### Step 2: Use the dot product We know that: \[ \mathbf{a} \cdot \mathbf{b} = 2 \] Calculating the dot product: \[ (\hat{i} + \hat{j} + \hat{k}) \cdot (\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}) = \alpha + \beta + \gamma = 2 \quad \text{(1)} \] ### Step 3: Use the cross product We are also given: \[ \mathbf{a} \times \mathbf{b} = 2\hat{i} + \hat{j} - 3\hat{k} \] Calculating the cross product: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ \alpha & \beta & \gamma \end{vmatrix} \] This determinant expands to: \[ \hat{i} \begin{vmatrix} 1 & 1 \\ \beta & \gamma \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ \alpha & \gamma \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ \alpha & \beta \end{vmatrix} \] Calculating the minors: \[ = \hat{i} (1\gamma - 1\beta) - \hat{j} (1\gamma - 1\alpha) + \hat{k} (1\beta - 1\alpha) \] \[ = (\gamma - \beta) \hat{i} - (\gamma - \alpha) \hat{j} + (\beta - \alpha) \hat{k} \] Setting this equal to \( 2\hat{i} + \hat{j} - 3\hat{k} \): \[ \gamma - \beta = 2 \quad \text{(2)} \] \[ -(\gamma - \alpha) = 1 \quad \Rightarrow \quad \gamma - \alpha = -1 \quad \text{(3)} \] \[ \beta - \alpha = -3 \quad \text{(4)} \] ### Step 4: Solve the system of equations From equations (2), (3), and (4), we can express \( \gamma \), \( \beta \), and \( \alpha \): 1. From (2): \( \gamma = \beta + 2 \) 2. From (3): \( \alpha = \gamma + 1 \) 3. From (4): \( \beta = \alpha - 3 \) Substituting \( \gamma \) from (2) into (3): \[ \alpha = (\beta + 2) + 1 \quad \Rightarrow \quad \alpha = \beta + 3 \quad \text{(5)} \] Now substitute (5) into (4): \[ \beta = (\beta + 3) - 3 \quad \Rightarrow \quad \beta = \beta \quad \text{(no new information)} \] Now substitute (5) into (1): \[ (\beta + 3) + \beta + (\beta + 2) = 2 \] \[ 3\beta + 5 = 2 \quad \Rightarrow \quad 3\beta = -3 \quad \Rightarrow \quad \beta = -1 \] Now substituting \( \beta = -1 \) back into (5): \[ \alpha = -1 + 3 = 2 \] And substituting \( \beta = -1 \) into (2): \[ \gamma = -1 + 2 = 1 \] ### Step 5: Write the vector \( \mathbf{b} \) Thus, we have: \[ \alpha = 2, \quad \beta = -1, \quad \gamma = 1 \] So, \[ \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \] ### Final Answer \[ \mathbf{b} = 2\hat{i} - \hat{j} + \hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

IF bara times barb = barc and barb times barc=bara then

IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times bara,barr . barb =0 then barr/|barr| is equal to

The vectors bara,barb and bara+barb are

If barc=bara times barb and barb=barc times bara then

Select and write the appropriate answer from the given alternatives in each of the following sub- questions: if hata = 3hati - hatj + 4hatk, barb = 2hati + 3hatj - hatk, barc = - 5 hat i + 2hatj + 3hatk then bara . (barb xx barc) = ……….

If bara=hati+hatj+hatk, barb=2hati+lambdahatj+hatk,barc=hati-hatj+4hatk and bara.(barbxxbarc)=10 , then lambda is equal to

IF bar a = hati + hatj +2 hatk , bar b = 2 hati - hatj +hatk and bar c = 3 hati - hatk and bar c = m bara + n barb then m+ n =

If bara =3 hati - 2hatj +7 hatk, barb = 5hati + hat j -2 hatk and barc = hati + hatj - hat k, " then find "bara * (barb xx barc) .

If bara=hati+hatj,barb=2hati-hatj and barr=2hati-4hatj, then express vecr as linear combination of bara and barb

If bara=hati+2hatj-3hatk,barb=2hati+hatj-hatk and baru is vector satisfying bara times baru=bara times barb and bara.baru=bar0 , then 2|baru|^2 is equal to

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + ...

    Text Solution

    |

  2. If bara barb barc are three nonzero vectors no two of which are collin...

    Text Solution

    |

  3. If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3ha...

    Text Solution

    |

  4. If bara,barb barc and bard are non-zero, non-collinear vectors such th...

    Text Solution

    |

  5. IF barx and bary non zero linearly independent vectors such that |barx...

    Text Solution

    |

  6. If bara,barb and barc be there non-zero vectors, no two of which are c...

    Text Solution

    |

  7. If bara and barb are unit vectors and barc satisfies 2(hata times hatb...

    Text Solution

    |

  8. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  9. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  10. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  11. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  12. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  13. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  14. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  15. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  16. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  17. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  18. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  19. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  20. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |