Home
Class 12
MATHS
Let barb = -1hati+4hatj+6hatk and barc=2...

Let `barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk` IF `bara` be a unit vector and the scalar triple product `[bara barb barc]` has the greatest value then `bara` is equal to

A

`1/sqrt3(hati+hatj+hatk)`

B

`1/sqrt5(sqrt2i-hatj-sqrt2k)`

C

`1/3(2hati+2hatj-hatk)`

D

`1/sqrt59(3hati-7hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a unit vector \( \vec{a} \) such that the scalar triple product \( [\vec{a}, \vec{b}, \vec{c}] \) has the greatest value. The vectors are given as: \[ \vec{b} = -\hat{i} + 4\hat{j} + 6\hat{k} \] \[ \vec{c} = 2\hat{i} - 7\hat{j} - 10\hat{k} \] ### Step 1: Find the cross product \( \vec{b} \times \vec{c} \) To find the scalar triple product, we first need to calculate \( \vec{b} \times \vec{c} \). \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 4 & 6 \\ 2 & -7 & -10 \end{vmatrix} \] Calculating the determinant: \[ \vec{b} \times \vec{c} = \hat{i} \begin{vmatrix} 4 & 6 \\ -7 & -10 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 6 \\ 2 & -10 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 4 \\ 2 & -7 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 6 \\ -7 & -10 \end{vmatrix} = (4)(-10) - (6)(-7) = -40 + 42 = 2 \) 2. \( \begin{vmatrix} -1 & 6 \\ 2 & -10 \end{vmatrix} = (-1)(-10) - (6)(2) = 10 - 12 = -2 \) 3. \( \begin{vmatrix} -1 & 4 \\ 2 & -7 \end{vmatrix} = (-1)(-7) - (4)(2) = 7 - 8 = -1 \) Putting it all together: \[ \vec{b} \times \vec{c} = 2\hat{i} + 2\hat{j} - \hat{k} \] ### Step 2: Express the scalar triple product The scalar triple product can be expressed as: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] Let \( \vec{a} = x\hat{i} + y\hat{j} + z\hat{k} \), where \( x^2 + y^2 + z^2 = 1 \) (since \( \vec{a} \) is a unit vector). Thus, \[ [\vec{a}, \vec{b}, \vec{c}] = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{i} + 2\hat{j} - \hat{k}) = 2x + 2y - z \] ### Step 3: Maximize the expression \( 2x + 2y - z \) To maximize \( 2x + 2y - z \) under the constraint \( x^2 + y^2 + z^2 = 1 \), we can use the method of Lagrange multipliers or substitute \( z = \sqrt{1 - x^2 - y^2} \). Substituting \( z \): \[ f(x, y) = 2x + 2y - \sqrt{1 - x^2 - y^2} \] ### Step 4: Find critical points To find the maximum, we can analyze the function or check specific values for \( x, y, z \) that satisfy the unit vector condition. ### Step 5: Check possible values We can check specific unit vectors. For example, if we try: 1. \( x = \frac{1}{\sqrt{3}}, y = \frac{1}{\sqrt{3}}, z = \frac{1}{\sqrt{3}} \) 2. \( x = \frac{\sqrt{2}}{\sqrt{5}}, y = -\frac{1}{\sqrt{5}}, z = -\frac{\sqrt{2}}{\sqrt{5}} \) 3. \( x = \frac{2}{\sqrt{3}}, y = \frac{2}{\sqrt{3}}, z = -\frac{1}{\sqrt{3}} \) 4. \( x = \frac{3}{\sqrt{59}}, y = -\frac{7}{\sqrt{59}}, z = -\frac{1}{\sqrt{59}} \) After calculating the values, we find that the maximum occurs for the third option. ### Final Answer Thus, the unit vector \( \vec{a} \) that maximizes the scalar triple product is: \[ \vec{a} = \frac{2}{\sqrt{3}}\hat{i} + \frac{2}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Let bara,barb and barc three vectors, Then scalar triple product [bara barb barc] is equal to

If bara,barb,barc are three vectors, then [bara,barb,barc] is not equal to

Let bara be a unit vector perpendicular to unit vectors barb and barc inclined at an angle a. then barb times barc is

If bara =3 hati - 2hatj +7 hatk, barb = 5hati + hat j -2 hatk and barc = hati + hatj - hat k, " then find "bara * (barb xx barc) .

If bara=hati+2hatj-3hatk,barb=2hati+hatj-hatk and baru is vector satisfying bara times baru=bara times barb and bara.baru=bar0 , then 2|baru|^2 is equal to

If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3hatk then barb is equal to

Let barA= hati + 2hatj + 3hatk and vec B = 3hati + 4hatj + 5hatk The value of the scalar sqrt(|bar A times barB|^2+(barA.barB)^2) is equal to

If bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3hatk then

IF bara,barb,barc are unit vectors such that bara+barb+barc=0 then the value of bara.barb+barb.barc+barc.bara is

For any two vectors barA and barB if barA.barB=|bar AxxbarB| , the magnitude of barC=barA+barB is equal to :

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If bara,barb and barc be there non-zero vectors, no two of which are c...

    Text Solution

    |

  2. If bara and barb are unit vectors and barc satisfies 2(hata times hatb...

    Text Solution

    |

  3. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  4. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  5. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  6. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  7. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  8. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  9. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  10. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  11. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  12. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  13. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  14. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  15. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  16. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  17. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  18. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  19. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  20. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |