Home
Class 12
MATHS
A unit vector is orthogonal to 5hati+2ha...

A unit vector is orthogonal to `5hati+2hatj+6hatk` and is coplanar to `2hati+hatj+hatk and hati-hatj+hatk` then the vector is

A

`(3hatj-hatk)/sqrt10`

B

`(2hati+5hatj)/sqrt29`

C

`(6hati-5hatk)/sqrt61`

D

`(2hati+2hatj-hatk)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is orthogonal to the vector \( \mathbf{A} = 5\hat{i} + 2\hat{j} + 6\hat{k} \) and coplanar to the vectors \( \mathbf{B} = 2\hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{C} = \hat{i} - \hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Find the cross product of vectors \( \mathbf{B} \) and \( \mathbf{C} \) The cross product \( \mathbf{B} \times \mathbf{C} \) can be calculated using the determinant: \[ \mathbf{B} \times \mathbf{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = (1)(1) - (1)(-1) = 1 + 1 = 2 \) 2. \( \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 2 - 1 = 1 \) 3. \( \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = (2)(-1) - (1)(1) = -2 - 1 = -3 \) Putting it all together: \[ \mathbf{B} \times \mathbf{C} = 2\hat{i} - 1\hat{j} - 3\hat{k} \] ### Step 2: Find the cross product of \( \mathbf{A} \) and \( \mathbf{B} \times \mathbf{C} \) Now we need to find \( \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) \): \[ \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5 & 2 & 6 \\ 2 & -1 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 6 \\ -1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 5 & 6 \\ 2 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 5 & 2 \\ 2 & -1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 2 & 6 \\ -1 & -3 \end{vmatrix} = (2)(-3) - (6)(-1) = -6 + 6 = 0 \) 2. \( \begin{vmatrix} 5 & 6 \\ 2 & -3 \end{vmatrix} = (5)(-3) - (6)(2) = -15 - 12 = -27 \) 3. \( \begin{vmatrix} 5 & 2 \\ 2 & -1 \end{vmatrix} = (5)(-1) - (2)(2) = -5 - 4 = -9 \) Putting it all together: \[ \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = 0\hat{i} + 27\hat{j} - 9\hat{k} = 27\hat{j} - 9\hat{k} \] ### Step 3: Find the magnitude of the resulting vector Now, we find the magnitude of \( 27\hat{j} - 9\hat{k} \): \[ |\mathbf{A} \times (\mathbf{B} \times \mathbf{C})| = \sqrt{(0)^2 + (27)^2 + (-9)^2} = \sqrt{0 + 729 + 81} = \sqrt{810} = 9\sqrt{10} \] ### Step 4: Find the unit vector Finally, the unit vector \( \mathbf{\alpha} \) is given by: \[ \mathbf{\alpha} = \frac{\mathbf{A} \times (\mathbf{B} \times \mathbf{C})}{|\mathbf{A} \times (\mathbf{B} \times \mathbf{C})|} = \frac{27\hat{j} - 9\hat{k}}{9\sqrt{10}} = \frac{3\hat{j} - \hat{k}}{\sqrt{10}} \] ### Final Answer The unit vector is: \[ \mathbf{\alpha} = \frac{3\hat{j} - \hat{k}}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is

The unit vector which is orthogonal to the vector 5hatj + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is

the vector which is orthogonal to the vector 3hati+2hatj+6hatk and is coplanar with the vectors 2hati+hatj+hatk and hati-hatj+hatk is

The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk and is coplanar with vectors 2hati+hatj+hatk and hati-hatj+hatk , is

The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk and is coplanar with the vectors 2hati+hatj+hatk and hati-hatj+hatk is (A) (2hati-6hatj+hatk)/sqrt(41) (B) (2hati-3hatj)/sqrt(3) (C) 3hatj-hatk)/sqrt(10) (D) (4hati+3hatj-3hatk)/sqrt(34)

If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

The vector equation of a line passing through the point hati + 2hatj + 3hatk and perpendicular to the vectors hati +hatj + hatk and 2hati - hatj + hatk is

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If bara and barb are unit vectors and barc satisfies 2(hata times hatb...

    Text Solution

    |

  2. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  3. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  4. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  5. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  6. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  7. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  8. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  9. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  10. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  11. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  12. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  13. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  14. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  15. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  16. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  17. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  18. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  19. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  20. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |