Home
Class 12
MATHS
IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B...

IF `(sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^2 C)hatk` are coplanar then `cot^2 A+cot^2B+cot^2C` is

A

equal to 1

B

equal to 2

C

equal to 0

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \cot^2 A + \cot^2 B + \cot^2 C \) given that the vectors \( \vec{a} = (\sec^2 A) \hat{i} + \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} + (\sec^2 B) \hat{j} + \hat{k} \), and \( \vec{c} = \hat{i} + \hat{j} + (\sec^2 C) \hat{k} \) are coplanar, we will follow these steps: ### Step 1: Set up the determinant for coplanarity The vectors are coplanar if the determinant of the matrix formed by their components is zero. Thus, we need to compute the determinant: \[ \begin{vmatrix} \sec^2 A & 1 & 1 \\ 1 & \sec^2 B & 1 \\ 1 & 1 & \sec^2 C \end{vmatrix} = 0 \] ### Step 2: Expand the determinant Using the determinant expansion, we can write: \[ \sec^2 A \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} + 1 \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} = 0 \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \sec^2 B & 1 \\ 1 & \sec^2 C \end{vmatrix} = \sec^2 B \cdot \sec^2 C - 1 \) 2. \( \begin{vmatrix} 1 & 1 \\ 1 & \sec^2 C \end{vmatrix} = \sec^2 C - 1 \) 3. \( \begin{vmatrix} 1 & \sec^2 B \\ 1 & 1 \end{vmatrix} = 1 - \sec^2 B \) Substituting these back into the determinant gives: \[ \sec^2 A (\sec^2 B \sec^2 C - 1) - (\sec^2 C - 1) + (1 - \sec^2 B) = 0 \] ### Step 3: Simplify the equation Rearranging the equation yields: \[ \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 C + 1 + 1 - \sec^2 B = 0 \] This simplifies to: \[ \sec^2 A \sec^2 B \sec^2 C - \sec^2 A - \sec^2 B - \sec^2 C + 2 = 0 \] ### Step 4: Use the identity for secant Recall that \( \sec^2 \theta = 1 + \tan^2 \theta \). Thus, we can substitute: \[ (1 + \tan^2 A)(1 + \tan^2 B)(1 + \tan^2 C) - (1 + \tan^2 A) - (1 + \tan^2 B) - (1 + \tan^2 C) + 2 = 0 \] ### Step 5: Expand and collect terms Expanding the left-hand side gives: \[ 1 + \tan^2 A + \tan^2 B + \tan^2 C + \tan^2 A \tan^2 B + \tan^2 A \tan^2 C + \tan^2 B \tan^2 C + \tan^2 A \tan^2 B \tan^2 C - 3 - (\tan^2 A + \tan^2 B + \tan^2 C) + 2 = 0 \] This simplifies to: \[ \tan^2 A \tan^2 B \tan^2 C + \tan^2 A \tan^2 B + \tan^2 A \tan^2 C + \tan^2 B \tan^2 C = 0 \] ### Step 6: Divide by \( \tan^2 A \tan^2 B \tan^2 C \) Dividing through by \( \tan^2 A \tan^2 B \tan^2 C \) gives: \[ 1 + \frac{1}{\tan^2 A} + \frac{1}{\tan^2 B} + \frac{1}{\tan^2 C} = 0 \] ### Step 7: Relate to cotangent This implies: \[ \cot^2 A + \cot^2 B + \cot^2 C + 1 = 0 \] Thus: \[ \cot^2 A + \cot^2 B + \cot^2 C = -1 \] ### Conclusion Since the sum of squares cannot be negative, we conclude that \( \cot^2 A + \cot^2 B + \cot^2 C \) is not defined.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati+hatj+(sec^(2) c)hatk are coplanar, then the value of cosec^(2)A+cosec^(2)B+cosec^(2)C , is

If three vectors (sec^(2)A) hati+hatj+hatk , hati+(sec^(2)B)hatj+hatk,hati+hatj+sec^(2)hatk are complnar, then the value of cosec^(2)A + cosec^(2)B+ cosec^(2)C is -

Vectors 2hati+2hatj-2hatk,5hati+yhatj+hatk and -hati+2hatj+2hatk are coplanar then find the value of y.

If the vectors 2hati-3hatj+4hatk and hati+2hatj-hatk and m hati - hatj+2hatk are coplanar, then the value of m is

If the vectors 2hati-hatj+hatk,hati+2hatj-3hatk and 3hati+ahatj+5hatk are coplanar, the prove that a=-4.

Show that the vectors hati-hatj-hatk,2hati+3hatj+hatk and 7hati+3hatj-4hatk are coplanar.

The vectors lambdahati + hatj + 2hatk, hati + lambdahatj +hatk, 2hati - hatj + 2hatk are coplanar, if:

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. Let barb = -1hati+4hatj+6hatk and barc=2hati-7hatj-10hatk IF bara be a...

    Text Solution

    |

  2. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  3. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  4. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  5. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  6. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  7. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  8. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  9. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  10. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  11. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  12. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  13. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  14. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  15. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  16. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  17. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  18. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  19. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  20. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |