Home
Class 12
MATHS
Let bara,barb and barc be non-zero vecto...

Let `bara,barb and barc` be non-zero vectors such that `(bara times barb)times barc=1/3|barb||barc|bara`. If `theta` is the obtuse angle between the vectors `barb and barc` then `sin theta` equals

A

`1/3`

B

`sqrt2/3`

C

`2/3`

D

`(2sqrt2)/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will use the properties of vector products and some trigonometric identities. ### Step 1: Understand the given condition We are given that: \[ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \frac{1}{3} |\mathbf{b}| |\mathbf{c}| \mathbf{a} \] This is a vector equation involving the cross product of vectors. ### Step 2: Use the vector triple product identity We can use the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] Applying this to our equation, we have: \[ (\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] ### Step 3: Set the two sides equal Now we can set the left-hand side equal to the right-hand side: \[ (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} = \frac{1}{3} |\mathbf{b}| |\mathbf{c}| \mathbf{a} \] ### Step 4: Compare coefficients For the vectors to be equal, their coefficients must also be equal. This gives us two equations: 1. \(\mathbf{a} \cdot \mathbf{c} = \frac{1}{3} |\mathbf{b}| |\mathbf{c}|\) 2. \(-(\mathbf{a} \cdot \mathbf{b}) = 0\) From the second equation, we conclude: \[ \mathbf{a} \cdot \mathbf{b} = 0 \] This means that vectors \(\mathbf{a}\) and \(\mathbf{b}\) are orthogonal. ### Step 5: Analyze the first equation From the first equation, we have: \[ \mathbf{a} \cdot \mathbf{c} = \frac{1}{3} |\mathbf{b}| |\mathbf{c}| \] ### Step 6: Relate to cosine of the angle Using the definition of the dot product: \[ \mathbf{a} \cdot \mathbf{c} = |\mathbf{a}| |\mathbf{c}| \cos \theta \] where \(\theta\) is the angle between \(\mathbf{a}\) and \(\mathbf{c}\). Thus, we can write: \[ |\mathbf{a}| |\mathbf{c}| \cos \theta = \frac{1}{3} |\mathbf{b}| |\mathbf{c}| \] ### Step 7: Simplify the equation Assuming \(|\mathbf{c}| \neq 0\), we can divide both sides by \(|\mathbf{c}|\): \[ |\mathbf{a}| \cos \theta = \frac{1}{3} |\mathbf{b}| \] ### Step 8: Use the cosine of the angle between \(\mathbf{b}\) and \(\mathbf{c}\) Now, we know that: \[ \mathbf{b} \cdot \mathbf{c} = |\mathbf{b}| |\mathbf{c}| \cos \phi \] where \(\phi\) is the angle between \(\mathbf{b}\) and \(\mathbf{c}\). Given that \(\mathbf{b} \cdot \mathbf{c} = -\frac{1}{3} |\mathbf{b}| |\mathbf{c}|\), we have: \[ |\mathbf{b}| |\mathbf{c}| \cos \phi = -\frac{1}{3} |\mathbf{b}| |\mathbf{c}| \] Thus, \[ \cos \phi = -\frac{1}{3} \] ### Step 9: Find \(\sin \phi\) Using the identity \(\sin^2 \phi + \cos^2 \phi = 1\): \[ \sin^2 \phi = 1 - \left(-\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Thus, \[ \sin \phi = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] ### Final Answer Therefore, the value of \(\sin \theta\) is: \[ \sin \theta = \frac{2\sqrt{2}}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

IF bara,barb,barc and bard are any four vectors then (bara times barb) times (barc times bard) is a vector

IF bara barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .

lf bara,barb,barc are three unit-vectors such that 3bara + 4barb + 5barc = bar0 , then

If bara,barb,barc are non -coplanar unit vectors such that bara times (barb times barc)=((barb+barc))/sqrt2, barb and barc are non parallel then prove that angle between bara and barb is 3pi//4

IF bara times barb = barc and barb times barc=bara then

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

IF barx times barb=barc times barb and barx . bara =0 then barx=

Let bara, barb, barc be unit vectors such that bara· barb = 0 = bara ·barc If mangle(barb,barc)=(pi)/6, then : bara=

Let bara,barb and barc three vectors, Then scalar triple product [bara barb barc] is equal to

If bara,barb and barc are three non-coplanar vectors, then : (bara + barb + barc) · [(bara + barb) xx (bara + barc)] =

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. A unit vector is orthogonal to 5hati+2hatj+6hatk and is coplanar to 2h...

    Text Solution

    |

  2. IF (sec^2A)hati+hatj+hatk, hati+(sec^2 B)hatj+hatk and hati+hatj+(sec^...

    Text Solution

    |

  3. Let bara,barb and barc be non-zero vectors such that (bara times barb)...

    Text Solution

    |

  4. In a triangle OAB, E is the midpoint of OB and D is a point on AB such...

    Text Solution

    |

  5. Unit vector barc is inclined at an angle theta to unit vector bara tim...

    Text Solution

    |

  6. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  7. Unit vectors hata and hat b are inclined at an angle 2theta and |hat a...

    Text Solution

    |

  8. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  9. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  10. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  11. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  12. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  13. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  14. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  15. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  16. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  17. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  18. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  19. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  20. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |