Home
Class 12
MATHS
IF barA=hati-3hatj+4hatk,barB=6hati+4hat...

IF `barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk` and a vector `barR` satisfies `barR times barB=barC times barB,barR. barA=0` then `|barB|/(|barR-barC|)` is equal to

A

1

B

`1//2`

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{|\bar{B}|}{|\bar{R} - \bar{C}|}\) given the vectors \(\bar{A}\), \(\bar{B}\), and \(\bar{C}\) and the conditions on \(\bar{R}\). ### Step 1: Identify the vectors We have: \[ \bar{A} = \hat{i} - 3\hat{j} + 4\hat{k} \] \[ \bar{B} = 6\hat{i} + 4\hat{j} - 8\hat{k} \] \[ \bar{C} = 5\hat{i} + 2\hat{j} + 5\hat{k} \] ### Step 2: Calculate \(|\bar{B}|\) The magnitude of vector \(\bar{B}\) is calculated as follows: \[ |\bar{B}| = \sqrt{(6)^2 + (4)^2 + (-8)^2} = \sqrt{36 + 16 + 64} = \sqrt{116} = 2\sqrt{29} \] ### Step 3: Use the condition \(\bar{R} \times \bar{B} = \bar{C} \times \bar{B}\) This condition implies that \(\bar{R}\) lies in the plane defined by \(\bar{B}\) and \(\bar{C}\). We can express \(\bar{R}\) in terms of \(\bar{C}\) and a scalar multiple of \(\bar{B}\): \[ \bar{R} = \bar{C} + k\bar{B} \] for some scalar \(k\). ### Step 4: Use the condition \(\bar{R} \cdot \bar{A} = 0\) Substituting \(\bar{R}\) into this condition: \[ (\bar{C} + k\bar{B}) \cdot \bar{A} = 0 \] Expanding this gives: \[ \bar{C} \cdot \bar{A} + k(\bar{B} \cdot \bar{A}) = 0 \] From this, we can solve for \(k\): \[ k = -\frac{\bar{C} \cdot \bar{A}}{\bar{B} \cdot \bar{A}} \] ### Step 5: Calculate \(\bar{C} \cdot \bar{A}\) and \(\bar{B} \cdot \bar{A}\) Calculating \(\bar{C} \cdot \bar{A}\): \[ \bar{C} \cdot \bar{A} = (5)(1) + (2)(-3) + (5)(4) = 5 - 6 + 20 = 19 \] Calculating \(\bar{B} \cdot \bar{A}\): \[ \bar{B} \cdot \bar{A} = (6)(1) + (4)(-3) + (-8)(4) = 6 - 12 - 32 = -38 \] ### Step 6: Substitute back to find \(k\) Substituting these values into the equation for \(k\): \[ k = -\frac{19}{-38} = \frac{1}{2} \] ### Step 7: Find \(\bar{R}\) Now substituting \(k\) back into the expression for \(\bar{R}\): \[ \bar{R} = \bar{C} + \frac{1}{2}\bar{B} = (5\hat{i} + 2\hat{j} + 5\hat{k}) + \frac{1}{2}(6\hat{i} + 4\hat{j} - 8\hat{k}) \] Calculating this gives: \[ \bar{R} = 5\hat{i} + 2\hat{j} + 5\hat{k} + 3\hat{i} + 2\hat{j} - 4\hat{k} = (5 + 3)\hat{i} + (2 + 2)\hat{j} + (5 - 4)\hat{k} = 8\hat{i} + 4\hat{j} + 1\hat{k} \] ### Step 8: Calculate \(|\bar{R} - \bar{C}|\) Now we find \(\bar{R} - \bar{C}\): \[ \bar{R} - \bar{C} = (8\hat{i} + 4\hat{j} + 1\hat{k}) - (5\hat{i} + 2\hat{j} + 5\hat{k}) = (8 - 5)\hat{i} + (4 - 2)\hat{j} + (1 - 5)\hat{k} = 3\hat{i} + 2\hat{j} - 4\hat{k} \] Calculating the magnitude: \[ |\bar{R} - \bar{C}| = \sqrt{(3)^2 + (2)^2 + (-4)^2} = \sqrt{9 + 4 + 16} = \sqrt{29} \] ### Step 9: Calculate \(\frac{|\bar{B}|}{|\bar{R} - \bar{C}|}\) Now substituting the magnitudes: \[ \frac{|\bar{B}|}{|\bar{R} - \bar{C}|} = \frac{2\sqrt{29}}{\sqrt{29}} = 2 \] ### Final Answer Thus, the value of \(\frac{|\bar{B}|}{|\bar{R} - \bar{C}|}\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If bara=hati+2hatj-3hatk,barb=2hati+hatj-hatk and baru is vector satisfying bara times baru=bara times barb and bara.baru=bar0 , then 2|baru|^2 is equal to

IF bara times barb = barc and barb times barc=bara then

IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times bara,barr . barb =0 then barr/|barr| is equal to

If barc=bara times barb and barb=barc times bara then

If bara=hati+hatj+hatk, barb=2hati+lambdahatj+hatk,barc=hati-hatj+4hatk and bara.(barbxxbarc)=10 , then lambda is equal to

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

barA,barB,barC are three vectors respectively given by 2hati+hatk,hati+hatj+hatk and 4hati-3hatj+7hatk Then vector barR , which satisfies the relation barR times barB=barC times barB and barR.barA=0 is,

If bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3hatk then

Show that vectors bara times (barb times barc),barb times (barc times bara). barc times (bara times barb) are coplanar.

If bara =3 hati - 2hatj +7 hatk, barb = 5hati + hat j -2 hatk and barc = hati + hatj - hat k, " then find "bara * (barb xx barc) .

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. IF the non-zero vectors bara and barb are perpendiculars to each other...

    Text Solution

    |

  2. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  3. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  4. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  5. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  6. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  7. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  8. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  9. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  10. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  11. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  12. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  13. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  14. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  15. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  16. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  17. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  18. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  19. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  20. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |