Home
Class 12
MATHS
If hatd is a unit vectors such that hatd...

If `hatd` is a unit vectors such that `hatd=lamdabarb times barc+mubarc times bara+vbara times barb` then `|(hatd.bara)(barb times barc)+(bard.barb) (barc times bara)+(bard.barc) (bara times barc)|` is equal to

A

`|[bara barb barc]|`

B

1

C

`3|[bara barb barc]|`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ |( \hat{d} \cdot \bar{a})(\bar{b} \times \bar{c}) + (\hat{d} \cdot \bar{b})(\bar{c} \times \bar{a}) + (\hat{d} \cdot \bar{c})(\bar{a} \times \bar{b})| \] Given that \(\hat{d}\) is a unit vector expressed as: \[ \hat{d} = \lambda (\bar{b} \times \bar{c}) + \mu (\bar{c} \times \bar{a}) + v (\bar{a} \times \bar{b}) \] ### Step 1: Compute \(\hat{d} \cdot \bar{a}\) Using the properties of the dot product and the cross product, we can compute: \[ \hat{d} \cdot \bar{a} = \lambda (\bar{b} \times \bar{c}) \cdot \bar{a} + \mu (\bar{c} \times \bar{a}) \cdot \bar{a} + v (\bar{a} \times \bar{b}) \cdot \bar{a} \] The second and third terms become zero because the dot product of any vector with itself is zero. Thus, we have: \[ \hat{d} \cdot \bar{a} = \lambda (\bar{b} \times \bar{c}) \cdot \bar{a} \] ### Step 2: Compute \(\hat{d} \cdot \bar{b}\) Similarly, we compute: \[ \hat{d} \cdot \bar{b} = \lambda (\bar{b} \times \bar{c}) \cdot \bar{b} + \mu (\bar{c} \times \bar{a}) \cdot \bar{b} + v (\bar{a} \times \bar{b}) \cdot \bar{b} \] Again, the first and third terms become zero. Thus, we have: \[ \hat{d} \cdot \bar{b} = \mu (\bar{c} \times \bar{a}) \cdot \bar{b} \] ### Step 3: Compute \(\hat{d} \cdot \bar{c}\) Now, we compute: \[ \hat{d} \cdot \bar{c} = \lambda (\bar{b} \times \bar{c}) \cdot \bar{c} + \mu (\bar{c} \times \bar{a}) \cdot \bar{c} + v (\bar{a} \times \bar{b}) \cdot \bar{c} \] Again, the first and second terms become zero. Thus, we have: \[ \hat{d} \cdot \bar{c} = v (\bar{a} \times \bar{b}) \cdot \bar{c} \] ### Step 4: Substitute back into the original expression Now substituting these results back into the original expression: \[ |( \lambda (\bar{b} \times \bar{c}) \cdot \bar{a})(\bar{b} \times \bar{c}) + (\mu (\bar{c} \times \bar{a}) \cdot \bar{b})(\bar{c} \times \bar{a}) + (v (\bar{a} \times \bar{b}) \cdot \bar{c})(\bar{a} \times \bar{b})| \] ### Step 5: Simplifying the expression Using the properties of determinants, we can express this as: \[ = | \lambda \cdot \text{det}(\bar{a}, \bar{b}, \bar{c}) + \mu \cdot \text{det}(\bar{b}, \bar{c}, \bar{a}) + v \cdot \text{det}(\bar{c}, \bar{a}, \bar{b}) | \] ### Step 6: Final result Since \(\hat{d}\) is a unit vector, the magnitude of this expression simplifies to: \[ = |\text{det}(\bar{a}, \bar{b}, \bar{c})| \] Thus, the final answer is: \[ |\text{det}(\bar{a}, \bar{b}, \bar{c})| \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

If barc=bara times barb and barb=barc times bara then

IF barx times barb=barc times barb and barx . bara =0 then barx=

bara.[barb+barc)xx(bara+barb+barc)] is equal to

bara.(barb+barc)xx(bara+barb+barc)=

Let barlamda=bara times (barb +barc), barmu=barb times (barc+bara) and barv=barc times (bara+barb) , Then

IF bara times barb = barc and barb times barc=bara then

(bara+barb).(barb+barc)xx(bara+barb+barc)=

Prove that [bara times barb bara times barc bard]=(bara.bar d)[bara barb barc]

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. If the lines barr={a+1(1-a)}hati+(a-ta)hatj+{c+t(1-c)}hatk and barr1={...

    Text Solution

    |

  2. IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk...

    Text Solution

    |

  3. If hatd is a unit vectors such that hatd=lamdabarb times barc+mubarc t...

    Text Solution

    |

  4. (bara times hati)^2+(bara+hatj)^2+(bara times hatk)^2 is equal to

    Text Solution

    |

  5. If bara and barb are two unit vectors at 120^@ and c is any vector inc...

    Text Solution

    |

  6. In a triangle ABC, angleA=30^@ H is the orthocentre and D is the midpo...

    Text Solution

    |

  7. IF bara,barb,barc are non-coplanar vectors and lamda is a real number ...

    Text Solution

    |

  8. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  9. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  10. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  11. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  12. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  13. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  14. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  15. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  16. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  17. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  18. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  19. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |

  20. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |