Home
Class 12
MATHS
IF a,b,c are three real numbers not all ...

IF a,b,c are three real numbers not all equal and the vectors `barx=ahati+bhatj+chatk,bary=bhati+chatj+ahatk,barz=c hati+ahatj+bhatk` are coplanar then `barx.bary+bary.barz+barz.barx` is necessarily……

A

positive

B

non-negative

C

non-positive

D

negative

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{z} + \bar{z} \cdot \bar{x} \) given that the vectors \( \bar{x} \), \( \bar{y} \), and \( \bar{z} \) are coplanar. ### Step-by-Step Solution: 1. **Define the Vectors**: The vectors are defined as follows: \[ \bar{x} = a \hat{i} + b \hat{j} + c \hat{k} \] \[ \bar{y} = b \hat{i} + c \hat{j} + a \hat{k} \] \[ \bar{z} = c \hat{i} + a \hat{j} + b \hat{k} \] 2. **Calculate the Dot Products**: We will calculate each dot product separately. - **Dot Product \( \bar{x} \cdot \bar{y} \)**: \[ \bar{x} \cdot \bar{y} = (a \hat{i} + b \hat{j} + c \hat{k}) \cdot (b \hat{i} + c \hat{j} + a \hat{k}) = ab + bc + ca \] - **Dot Product \( \bar{y} \cdot \bar{z} \)**: \[ \bar{y} \cdot \bar{z} = (b \hat{i} + c \hat{j} + a \hat{k}) \cdot (c \hat{i} + a \hat{j} + b \hat{k}) = bc + ac + ab \] - **Dot Product \( \bar{z} \cdot \bar{x} \)**: \[ \bar{z} \cdot \bar{x} = (c \hat{i} + a \hat{j} + b \hat{k}) \cdot (a \hat{i} + b \hat{j} + c \hat{k}) = ac + ab + bc \] 3. **Sum the Dot Products**: Now we sum the results of the dot products: \[ \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{z} + \bar{z} \cdot \bar{x} = (ab + bc + ca) + (bc + ac + ab) + (ac + ab + bc) \] This simplifies to: \[ = 3(ab + bc + ca) \] 4. **Condition for Coplanarity**: Since the vectors \( \bar{x}, \bar{y}, \bar{z} \) are coplanar, their scalar triple product must be zero: \[ \bar{x} \cdot (\bar{y} \times \bar{z}) = 0 \] This implies that: \[ ab + bc + ca = 0 \] 5. **Final Result**: Substituting \( ab + bc + ca = 0 \) into our earlier result: \[ 3(ab + bc + ca) = 3 \cdot 0 = 0 \] Thus, the value of \( \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{z} + \bar{z} \cdot \bar{x} \) is necessarily **0**.
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Let a, b and c be distinct non-negative numbers. If vectos a hati +a hatj +chatk, hati + hatk and chati +chatj+bhatk are coplanar, then c is

If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj+bhatk are coplanar vectors, then the straight lines ax+by+c=0 will always pass through the point

Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj+chatk, hati+hatk and chati+chatj+bhatk lies in a plane then c is

Find the condition that the three points whose position vectors, a=ahati+bhatj+chatk,b=hati+chatj and c=-hati-hatj are collinear.

Let a,b and c be distinct non-negative numbers and the vectors ahati+ahatj+chatk,hati+hatk,chati+chatj+bhatk lie in a plane, then the quadratic equation ax^(2)+2cx+b=0 has

Let a,b,c be three distinct positive real numbers. If vecp,vecq,vecr lie in a plane, where vecp=ahati-ahatj+bhatk, vecq=hati+hatk and vecr=chati+chatj+bhatk , then b is

The vectors 3hati - hatj +2hatk, 2hati+hatj+3hatk and hati+lambdahatj-hatk are coplanar if value of lambda is (A) -2 (B) 0 (C) 2 (D) any real number

If the vectors ahati+bhatj+chatk,bhati+chatj+ahatk and chati+ahatj+bhatk are coplanar and a,b,c are distinct then (A) a^3+b^3+c^3=1 (B) a+b+c=1 (C) 1/a+1/b+1/c=1 (D) a+b+c=0

ahati + ahatj + chatk , hati+hatk , chati + chatj + bhatk are coplaner vector then find the relation between a,b,c and find value of c

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. Let X be the midpoint of the side AB of triangle ABC. And Y be the mid...

    Text Solution

    |

  2. Let baru,barv,barw be such that abs(baru)=1,abs(barv)=2,abs(barw)=3. I...

    Text Solution

    |

  3. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  4. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  5. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  6. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  7. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  8. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  9. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  10. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  11. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  12. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |

  13. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  14. Let bara barb barc be three unit vectors such that |bara+barb+barc|=1 ...

    Text Solution

    |

  15. IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times ...

    Text Solution

    |

  16. The vector has components 2p and 1 with respect to a rectangular Carte...

    Text Solution

    |

  17. Let bara be a unit vector perpendicular to unit vectors barb and barc ...

    Text Solution

    |

  18. A non-zero vector bara is parallel to the line of intersection of the ...

    Text Solution

    |

  19. phati+3hatj+4hatk and sqrt(q)i+4hatk are two vectors, where p,q ge 0 a...

    Text Solution

    |

  20. Statement -1 If xbara+ybarb+zbarc=0 implies x+y+z=0 where x,y,z are sc...

    Text Solution

    |