Home
Class 12
MATHS
Let bara and barb be two vectors of equa...

Let `bara and barb` be two vectors of equal magnitude 5units. Let `barp,q` be vectors such that `barp=bara+barb and barq=bara-barb`. IF `|barp times barq|=2(lamda-(bara.barb)^2}^(1/2)` then value of `lamda` is

A

25

B

125

C

625

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, let's define the vectors and their properties clearly. ### Step 1: Define the vectors Let \( \vec{a} \) and \( \vec{b} \) be two vectors with equal magnitudes: \[ |\vec{a}| = |\vec{b}| = 5 \text{ units} \] ### Step 2: Define the new vectors We define two new vectors: \[ \vec{p} = \vec{a} + \vec{b} \] \[ \vec{q} = \vec{a} - \vec{b} \] ### Step 3: Calculate the magnitudes of \( \vec{p} \) and \( \vec{q} \) To find the magnitudes of \( \vec{p} \) and \( \vec{q} \), we use the formula for the magnitude of a vector: \[ |\vec{p}| = |\vec{a} + \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 + 2(\vec{a} \cdot \vec{b})} \] Substituting the values: \[ |\vec{p}| = \sqrt{5^2 + 5^2 + 2(\vec{a} \cdot \vec{b})} = \sqrt{50 + 2(\vec{a} \cdot \vec{b})} \] Similarly, for \( \vec{q} \): \[ |\vec{q}| = |\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})} \] Substituting the values: \[ |\vec{q}| = \sqrt{5^2 + 5^2 - 2(\vec{a} \cdot \vec{b})} = \sqrt{50 - 2(\vec{a} \cdot \vec{b})} \] ### Step 4: Calculate \( |\vec{p} \times \vec{q}| \) The magnitude of the cross product of two vectors is given by: \[ |\vec{p} \times \vec{q}| = |\vec{p}| |\vec{q}| \sin \theta \] where \( \theta \) is the angle between \( \vec{p} \) and \( \vec{q} \). ### Step 5: Find \( \vec{p} \cdot \vec{q} \) We can find the dot product: \[ \vec{p} \cdot \vec{q} = (\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = \vec{a} \cdot \vec{a} - \vec{b} \cdot \vec{b} = |\vec{a}|^2 - |\vec{b}|^2 = 25 - 25 + 2(\vec{a} \cdot \vec{b}) = 2(\vec{a} \cdot \vec{b}) \] ### Step 6: Use the relationship given in the problem We know from the problem statement: \[ |\vec{p} \times \vec{q}| = 2\left(\lambda - (\vec{a} \cdot \vec{b})^2\right)^{1/2} \] ### Step 7: Substitute values into the equation From the previous steps: \[ |\vec{p}| = \sqrt{50 + 2(\vec{a} \cdot \vec{b})} \] \[ |\vec{q}| = \sqrt{50 - 2(\vec{a} \cdot \vec{b})} \] Thus: \[ |\vec{p} \times \vec{q}| = \sqrt{(50 + 2(\vec{a} \cdot \vec{b}))(50 - 2(\vec{a} \cdot \vec{b}))} \cdot \sin \theta \] This simplifies to: \[ |\vec{p} \times \vec{q}| = \sqrt{2500 - 4(\vec{a} \cdot \vec{b})^2} \cdot \sin \theta \] ### Step 8: Set the two expressions equal Setting the two expressions for \( |\vec{p} \times \vec{q}| \) equal gives: \[ \sqrt{2500 - 4(\vec{a} \cdot \vec{b})^2} \cdot \sin \theta = 2\left(\lambda - (\vec{a} \cdot \vec{b})^2\right)^{1/2} \] ### Step 9: Solve for \( \lambda \) To find \( \lambda \), we need to isolate it. From the equality, we can square both sides and simplify: \[ 2500 - 4(\vec{a} \cdot \vec{b})^2 = 4\left(\lambda - (\vec{a} \cdot \vec{b})^2\right) \] Expanding and rearranging gives: \[ 2500 = 4\lambda - 4(\vec{a} \cdot \vec{b})^2 + 4(\vec{a} \cdot \vec{b})^2 \] Thus: \[ 2500 = 4\lambda \] Finally, solving for \( \lambda \): \[ \lambda = \frac{2500}{4} = 625 \] ### Final Answer The value of \( \lambda \) is \( 625 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The vectors bara,barb and bara+barb are

lf bara = 3i - 5j and barb = 6i + 3j are two vectors, and barc is a vector such that barc = bara xx barb , then : abs(bara) : abs(barb) : abs(barc) =

Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara.barb)barb and barv=bara times barb then |barv| is

Show that vectors |barb|bara+|bara|barb and |barb||bara-|bara|b are orthogonal.

Prove that [bara+barb,barb+barc,barc+bara]=2[bara barb barc]

Given that bara and barb are not mutually perpendicular. If barc and bard are two vectors such that barb xx barc = barb xx bard and bara.bard =0, then : bard=

Let bara, barb, barc be unit vectors such that bara· barb = 0 = bara ·barc If mangle(barb,barc)=(pi)/6, then : bara=

IF the vector bara and barb are non-coplanar then bara/|bara|+barb/|barb| is

Let bara and barb be two unit vectors, and alpha be the angle between them. Then bara + barb is a unit vector, if alpha=

lf bara,barb,barc are three unit-vectors such that 3bara + 4barb + 5barc = bar0 , then

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  2. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  3. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  4. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  5. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  6. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  7. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  8. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  9. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  10. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |

  11. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  12. Let bara barb barc be three unit vectors such that |bara+barb+barc|=1 ...

    Text Solution

    |

  13. IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times ...

    Text Solution

    |

  14. The vector has components 2p and 1 with respect to a rectangular Carte...

    Text Solution

    |

  15. Let bara be a unit vector perpendicular to unit vectors barb and barc ...

    Text Solution

    |

  16. A non-zero vector bara is parallel to the line of intersection of the ...

    Text Solution

    |

  17. phati+3hatj+4hatk and sqrt(q)i+4hatk are two vectors, where p,q ge 0 a...

    Text Solution

    |

  18. Statement -1 If xbara+ybarb+zbarc=0 implies x+y+z=0 where x,y,z are sc...

    Text Solution

    |

  19. Statement-1 Let three are 2010 vectors in a plane such that sum of eve...

    Text Solution

    |

  20. Statement-1 Unit vector Orthogonal to 5hati+2hatj+6hatk are coplanar w...

    Text Solution

    |