Home
Class 12
MATHS
Let bara and barb be two non coplanar un...

Let `bara and barb` be two non coplanar unit vectors IF `baru=bara-(bara.barb)barb and barv=bara times barb` then `|barv|` is

A

`|baru|`

B

`|baru|=|baru.bara|`

C

`|baru|=|baru.barb|`

D

`|baru|+baru.(bara+barb)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the modulus of the vector \( \mathbf{v} \) given the definitions of vectors \( \mathbf{u} \) and \( \mathbf{v} \). ### Step-by-Step Solution: 1. **Understand the Given Vectors**: We are given two non-coplanar unit vectors \( \mathbf{a} \) and \( \mathbf{b} \). This means: \[ |\mathbf{a}| = 1 \quad \text{and} \quad |\mathbf{b}| = 1 \] 2. **Define the Vectors**: The vector \( \mathbf{u} \) is defined as: \[ \mathbf{u} = \mathbf{a} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{b} \] The vector \( \mathbf{v} \) is defined as: \[ \mathbf{v} = \mathbf{a} \times \mathbf{b} \] 3. **Find the Modulus of \( \mathbf{u} \)**: First, we need to calculate \( |\mathbf{u}|^2 \): \[ |\mathbf{u}|^2 = |\mathbf{a} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{b}|^2 \] Expanding this using the formula \( |\mathbf{x} - \mathbf{y}|^2 = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\mathbf{x} \cdot \mathbf{y} \): \[ |\mathbf{u}|^2 = |\mathbf{a}|^2 + |(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}|^2 - 2 \mathbf{a} \cdot ((\mathbf{a} \cdot \mathbf{b}) \mathbf{b}) \] Since \( |\mathbf{a}|^2 = 1 \) and \( |(\mathbf{a} \cdot \mathbf{b}) \mathbf{b}|^2 = (\mathbf{a} \cdot \mathbf{b})^2 \): \[ |\mathbf{u}|^2 = 1 + (\mathbf{a} \cdot \mathbf{b})^2 - 2(\mathbf{a} \cdot \mathbf{b})^2 \] Simplifying gives: \[ |\mathbf{u}|^2 = 1 - (\mathbf{a} \cdot \mathbf{b})^2 \] 4. **Find the Modulus of \( \mathbf{v} \)**: Now we calculate \( |\mathbf{v}|^2 \): \[ |\mathbf{v}|^2 = |\mathbf{a} \times \mathbf{b}|^2 \] The magnitude of the cross product of two vectors is given by: \[ |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta \] Since both \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors: \[ |\mathbf{v}|^2 = 1 \cdot 1 \cdot \sin^2\theta = \sin^2\theta \] 5. **Relate \( |\mathbf{u}| \) and \( |\mathbf{v}| \)**: From the previous steps, we have: \[ |\mathbf{u}|^2 = 1 - (\mathbf{a} \cdot \mathbf{b})^2 \] and \[ |\mathbf{v}|^2 = \sin^2\theta \] We know that \( \sin^2\theta = 1 - \cos^2\theta \) and \( \cos\theta = \mathbf{a} \cdot \mathbf{b} \). Therefore: \[ |\mathbf{u}|^2 = |\mathbf{v}|^2 \] 6. **Conclusion**: Since \( |\mathbf{u}|^2 = |\mathbf{v}|^2 \), we conclude: \[ |\mathbf{u}| = |\mathbf{v}| \] Thus, the modulus of \( \mathbf{v} \) is equal to the modulus of \( \mathbf{u} \). ### Final Answer: \[ |\mathbf{v}| = |\mathbf{u}| \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If barc=bara times barb and barb=barc times bara then

If bara and barb are non-collinear vectors, then

IF bara times barb = barc and barb times barc=bara then

If bara, barb,barc are non-coplanar vectors, then (bara+barb+barc).(bara+barb)xx(bara+barc)=

The vectors bara,barb and bara+barb are

[[bara-barb, barb-bara, barc-bara]]=

IF the vector bara and barb are non-coplanar then bara/|bara|+barb/|barb| is

If bara,barb,barc be any three non-coplanar vectors, then [bara+barb" "barb+barc" "barc+bara]=

lf bara,barb,barc are coplanar unit vectors, then [2bara-barb,2barb-barc,2barc-bara]=

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  2. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  3. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  4. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  5. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  6. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  7. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  8. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  9. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  10. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |

  11. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  12. Let bara barb barc be three unit vectors such that |bara+barb+barc|=1 ...

    Text Solution

    |

  13. IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times ...

    Text Solution

    |

  14. The vector has components 2p and 1 with respect to a rectangular Carte...

    Text Solution

    |

  15. Let bara be a unit vector perpendicular to unit vectors barb and barc ...

    Text Solution

    |

  16. A non-zero vector bara is parallel to the line of intersection of the ...

    Text Solution

    |

  17. phati+3hatj+4hatk and sqrt(q)i+4hatk are two vectors, where p,q ge 0 a...

    Text Solution

    |

  18. Statement -1 If xbara+ybarb+zbarc=0 implies x+y+z=0 where x,y,z are sc...

    Text Solution

    |

  19. Statement-1 Let three are 2010 vectors in a plane such that sum of eve...

    Text Solution

    |

  20. Statement-1 Unit vector Orthogonal to 5hati+2hatj+6hatk are coplanar w...

    Text Solution

    |