Home
Class 12
MATHS
IF bara=hati+hatj+hatk,barb=2hatj-hatk a...

IF `bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times bara,barr . barb`=0 then `barr/|barr|` is equal to

A

`1/sqrt11(hati+3hatj-hatk)`

B

`1/sqrt11(hati+3hatj+hatk)`

C

`1/sqrt3(hati+hatj+hatk)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \( \frac{\mathbf{r}}{|\mathbf{r}|} \) given the conditions involving vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{r} \). ### Step 1: Define the vectors Given: \[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{b} = 2\hat{j} - \hat{k} \] ### Step 2: Understand the conditions We have two conditions: 1. \( \mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a} \) 2. \( \mathbf{r} \cdot \mathbf{b} = 0 \) ### Step 3: Calculate \( \mathbf{b} \times \mathbf{a} \) To find \( \mathbf{b} \times \mathbf{a} \): \[ \mathbf{b} \times \mathbf{a} = (2\hat{j} - \hat{k}) \times (\hat{i} + \hat{j} + \hat{k}) \] Using the determinant method for cross products: \[ \mathbf{b} \times \mathbf{a} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 2 \\ 1 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i} (2 \cdot 1 - (-1) \cdot 1) - \hat{j} (0 \cdot 1 - (-1) \cdot 1) + \hat{k} (0 \cdot 1 - 2 \cdot 1) \] \[ = \hat{i} (2 + 1) - \hat{j} (0 + 1) + \hat{k} (0 - 2) \] \[ = 3\hat{i} - \hat{j} - 2\hat{k} \] ### Step 4: Set \( \mathbf{r} \times \mathbf{a} = \mathbf{b} \times \mathbf{a} \) This gives us: \[ \mathbf{r} \times \mathbf{a} = 3\hat{i} - \hat{j} - 2\hat{k} \] ### Step 5: Use the second condition \( \mathbf{r} \cdot \mathbf{b} = 0 \) Let \( \mathbf{r} = x\hat{i} + y\hat{j} + z\hat{k} \). Then: \[ \mathbf{r} \cdot \mathbf{b} = (x\hat{i} + y\hat{j} + z\hat{k}) \cdot (2\hat{j} - \hat{k}) = 2y - z = 0 \] Thus, we have: \[ z = 2y \] ### Step 6: Substitute \( z \) in \( \mathbf{r} \) Now, substituting \( z = 2y \) into \( \mathbf{r} \): \[ \mathbf{r} = x\hat{i} + y\hat{j} + 2y\hat{k} = x\hat{i} + y\hat{j} + 2y\hat{k} \] ### Step 7: Find the magnitude of \( \mathbf{r} \) The magnitude \( |\mathbf{r}| \) is: \[ |\mathbf{r}| = \sqrt{x^2 + y^2 + (2y)^2} = \sqrt{x^2 + y^2 + 4y^2} = \sqrt{x^2 + 5y^2} \] ### Step 8: Find the unit vector \( \frac{\mathbf{r}}{|\mathbf{r}|} \) The unit vector is: \[ \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{x\hat{i} + y\hat{j} + 2y\hat{k}}{\sqrt{x^2 + 5y^2}} \] ### Step 9: Simplify the unit vector To express it in terms of \( \hat{i}, \hat{j}, \hat{k} \): \[ \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{x}{\sqrt{x^2 + 5y^2}}\hat{i} + \frac{y}{\sqrt{x^2 + 5y^2}}\hat{j} + \frac{2y}{\sqrt{x^2 + 5y^2}}\hat{k} \] ### Conclusion The final expression for the unit vector \( \frac{\mathbf{r}}{|\mathbf{r}|} \) is: \[ \frac{\mathbf{r}}{|\mathbf{r}|} = \frac{x}{\sqrt{x^2 + 5y^2}}\hat{i} + \frac{y}{\sqrt{x^2 + 5y^2}}\hat{j} + \frac{2y}{\sqrt{x^2 + 5y^2}}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-II|18 Videos
  • VECTOR

    FIITJEE|Exercise COMPREHENSIONS|3 Videos
  • VECTOR

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL-II|6 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

IF barx times barb=barc times barb and barx . bara =0 then barx=

IF bara times barb = barc and barb times barc=bara then

If barc=bara times barb and barb=barc times bara then

IF barA=hati-3hatj+4hatk,barB=6hati+4hatj-8hatk,barC=5hati+2hatj+5hatk and a vector barR satisfies barR times barB=barC times barB,barR. barA=0 then |barB|/(|barR-barC|) is equal to

If bara=hati+2hatj-3hatk,barb=2hati+hatj-hatk and baru is vector satisfying bara times baru=bara times barb and bara.baru=bar0 , then 2|baru|^2 is equal to

If bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3hatk then

If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3hatk then barb is equal to

If bara=hati+hatj+hatk, barb=2hati+lambdahatj+hatk,barc=hati-hatj+4hatk and bara.(barbxxbarc)=10 , then lambda is equal to

bara times (barb times barc) +barb times (barc times bara)+ barc times (bara times barb) equals

bara.[barb+barc)xx(bara+barb+barc)] is equal to

FIITJEE-VECTOR-ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I
  1. IF a,b,c are three real numbers not all equal and the vectors barx=aha...

    Text Solution

    |

  2. Consider triangleABC and triangleA1B1C1 in such a way that bar(AB)=ba...

    Text Solution

    |

  3. Let bara=hati+hatj+hatk,barb=x1hati+x2hatj+x3hatk where x1,x2,x3 in (-...

    Text Solution

    |

  4. Let bara and barb be two vectors of equal magnitude 5units. Let barp,q...

    Text Solution

    |

  5. Consider a parallelogram constructed as 5bara+2barb and bara-3barb whe...

    Text Solution

    |

  6. The vectors vecx and vecy satisfy the equation pvecx+qvecy=veca (where...

    Text Solution

    |

  7. Let bara and barb be two non coplanar unit vectors IF baru=bara-(bara....

    Text Solution

    |

  8. A vector bara has components a1,a2,a3 in the right handed rectangular ...

    Text Solution

    |

  9. Let DeltaABC be given triangle IF |barBA+tbarBC |ge |barAC| for any t ...

    Text Solution

    |

  10. If barr.bara=barr.barb=barr.barc=0 for non-zero vector barr then the v...

    Text Solution

    |

  11. vecr=3hati+2hatj-5hatk, veca=2hati-hatj+hatk, vecb=hati+3hatj-2hatk, v...

    Text Solution

    |

  12. Let bara barb barc be three unit vectors such that |bara+barb+barc|=1 ...

    Text Solution

    |

  13. IF bara=hati+hatj+hatk,barb=2hatj-hatk and barr times bara=barb times ...

    Text Solution

    |

  14. The vector has components 2p and 1 with respect to a rectangular Carte...

    Text Solution

    |

  15. Let bara be a unit vector perpendicular to unit vectors barb and barc ...

    Text Solution

    |

  16. A non-zero vector bara is parallel to the line of intersection of the ...

    Text Solution

    |

  17. phati+3hatj+4hatk and sqrt(q)i+4hatk are two vectors, where p,q ge 0 a...

    Text Solution

    |

  18. Statement -1 If xbara+ybarb+zbarc=0 implies x+y+z=0 where x,y,z are sc...

    Text Solution

    |

  19. Statement-1 Let three are 2010 vectors in a plane such that sum of eve...

    Text Solution

    |

  20. Statement-1 Unit vector Orthogonal to 5hati+2hatj+6hatk are coplanar w...

    Text Solution

    |