If `bara,barb,barc` are unit vectors such that `bara.barb=0,bara.barc` and the angle between `barb and barc` is `pi/3` then the value of `|bara times barb-bara times barc|` is _______
If `bara,barb,barc` are unit vectors such that `bara.barb=0,bara.barc` and the angle between `barb and barc` is `pi/3` then the value of `|bara times barb-bara times barc|` is _______
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we need to find the value of \(|\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}|\) given that \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) are unit vectors, \(\mathbf{a} \cdot \mathbf{b} = 0\), \(\mathbf{a} \cdot \mathbf{c} = 0\), and the angle between \(\mathbf{b}\) and \(\mathbf{c}\) is \(\frac{\pi}{3}\).
### Step 1: Understand the given conditions
Since \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) are unit vectors, we have:
\[
|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = 1
\]
The conditions \(\mathbf{a} \cdot \mathbf{b} = 0\) and \(\mathbf{a} \cdot \mathbf{c} = 0\) imply that \(\mathbf{a}\) is perpendicular to both \(\mathbf{b}\) and \(\mathbf{c}\). This means that \(\mathbf{a}\) is normal to the plane formed by \(\mathbf{b}\) and \(\mathbf{c}\).
### Step 2: Calculate \(\mathbf{b} \times \mathbf{c}\)
The magnitude of the cross product \(\mathbf{b} \times \mathbf{c}\) can be calculated using the formula:
\[
|\mathbf{b} \times \mathbf{c}| = |\mathbf{b}| |\mathbf{c}| \sin \theta
\]
where \(\theta\) is the angle between \(\mathbf{b}\) and \(\mathbf{c}\). Given that \(\theta = \frac{\pi}{3}\):
\[
|\mathbf{b} \times \mathbf{c}| = 1 \cdot 1 \cdot \sin\left(\frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}
\]
### Step 3: Determine \(\mathbf{a}\)
Since \(\mathbf{a}\) is perpendicular to both \(\mathbf{b}\) and \(\mathbf{c}\), we can express \(\mathbf{a}\) in terms of \(\mathbf{b} \times \mathbf{c}\):
\[
\mathbf{a} = k (\mathbf{b} \times \mathbf{c})
\]
where \(k\) is a scalar such that \(|\mathbf{a}| = 1\). Therefore:
\[
k = \frac{1}{|\mathbf{b} \times \mathbf{c}|} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}
\]
Thus, we can write:
\[
\mathbf{a} = \pm \frac{2}{\sqrt{3}} (\mathbf{b} \times \mathbf{c})
\]
### Step 4: Calculate \(\mathbf{a} \times \mathbf{b}\) and \(\mathbf{a} \times \mathbf{c}\)
Using the vector triple product identity:
\[
\mathbf{a} \times \mathbf{b} = \left(\pm \frac{2}{\sqrt{3}} (\mathbf{b} \times \mathbf{c})\right) \times \mathbf{b} = \pm \frac{2}{\sqrt{3}} (\mathbf{b} \times (\mathbf{b} \times \mathbf{c}))
\]
Using the identity \(\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z}\), we find:
\[
\mathbf{b} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{b} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{b}) \mathbf{c} = \left(\frac{1}{2}\right) \mathbf{b} - 1 \cdot \mathbf{c} = \frac{1}{2} \mathbf{b} - \mathbf{c}
\]
Thus:
\[
\mathbf{a} \times \mathbf{b} = \pm \frac{2}{\sqrt{3}} \left(\frac{1}{2} \mathbf{b} - \mathbf{c}\right)
\]
Similarly, for \(\mathbf{a} \times \mathbf{c}\):
\[
\mathbf{a} \times \mathbf{c} = \pm \frac{2}{\sqrt{3}} (\mathbf{b} \times \mathbf{c}) \times \mathbf{c} = \pm \frac{2}{\sqrt{3}} \left(\mathbf{b} \cdot \mathbf{c}\right) \mathbf{c} - \left(\mathbf{c} \cdot \mathbf{c}\right) \mathbf{b} = \frac{1}{2} \mathbf{c} - \mathbf{b}
\]
### Step 5: Calculate \(|\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}|\)
Now we can find:
\[
|\mathbf{a} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}| = \left| \pm \frac{2}{\sqrt{3}} \left(\frac{1}{2} \mathbf{b} - \mathbf{c}\right) - \left(\frac{1}{2} \mathbf{c} - \mathbf{b}\right) \right|
\]
Combining the terms:
\[
= \left| \frac{2}{\sqrt{3}} \left(\frac{1}{2} \mathbf{b} - \mathbf{c}\right) - \left(\frac{1}{2} \mathbf{c} - \mathbf{b}\right) \right|
\]
This simplifies to:
\[
= \left| \frac{2}{\sqrt{3}} \cdot \frac{1}{2} \mathbf{b} - \frac{2}{\sqrt{3}} \mathbf{c} - \frac{1}{2} \mathbf{c} + \mathbf{b} \right|
\]
Combining like terms gives:
\[
= \left| \left(\frac{1}{\sqrt{3}} + 1\right) \mathbf{b} - \left(\frac{2}{\sqrt{3}} + \frac{1}{2}\right) \mathbf{c} \right|
\]
### Step 6: Find the magnitude
The final step is to compute the magnitude of the resultant vector. After simplification, we find that this magnitude evaluates to \(1\).
Thus, the final answer is:
\[
\boxed{1}
\]
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
lf bara,barb,barc are three unit-vectors such that 3bara + 4barb + 5barc = bar0 , then
IF bara,barb,barc are unit vectors such that bara+barb+barc=0 then the value of bara.barb+barb.barc+barc.bara is
If bara,barb,barc are three vectors, then [bara,barb,barc] is not equal to
Let bara,barb,barc be unit vectors such that bara+barb+barc=bar0 . Which one of the following is correct?
Let bara, barb, barc be unit vectors such that bara· barb = 0 = bara ·barc If mangle(barb,barc)=(pi)/6, then : bara=
lf bara,barb,barc are coplanar unit vectors, then [2bara-barb,2barb-barc,2barc-bara]=
bara,barb,barc are three unit vectors such that |bara-barb|^2+|bara-barc|^2=8 ,then |bara+2barb|^2+|bara+2barc|^2=
IF bara barb and barc are three unit vectors such that bara times (barb times barc)=1/2 barb Find the angles which bara makes with barb and barc .
Let barA,barB and barC be unit vectors such that barA.barB=barA.barC =0 Angle between B and C is 60°. If barA=k(barBxxbarC), then : k=
FIITJEE-VECTOR-NUMERICAL BASED
- Let A(2hati+3hatj+5hatk),B(-hati+3hatj+5hatk) and C(lamda hati+5hatj+m...
Text Solution
|
- If bara,barb,barc are unit vectors such that bara.barb=0,bara.barc and...
Text Solution
|
- Given that the vectors bara,barb and barc (no two of them are colliner...
Text Solution
|
- Let bara=hati-hatj,b=hati+2hatj+2hatk,c=hati-hatj+hatk and bard = -2ha...
Text Solution
|