Home
Class 12
MATHS
Let bara=hati-hatj,b=hati+2hatj+2hatk,c=...

Let `bara=hati-hatj,b=hati+2hatj+2hatk,c=hati-hatj+hatk and bard = -2hati-hatj-hatk` then the shortest distance between the lines `barr=bara+tbarb and barr=barc+pbard` is k , then the value of `1/k^2` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the lines defined by the vectors \( \bar{a} = \hat{i} - \hat{j} \), \( \bar{b} = \hat{i} + 2\hat{j} + 2\hat{k} \), \( \bar{c} = \hat{i} - \hat{j} + \hat{k} \), and \( \bar{d} = -2\hat{i} - \hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Define the Lines The first line \( L_1 \) can be represented as: \[ \vec{r_1} = \bar{a} + t \bar{b} = (\hat{i} - \hat{j}) + t(\hat{i} + 2\hat{j} + 2\hat{k}) \] The second line \( L_2 \) can be represented as: \[ \vec{r_2} = \bar{c} + p \bar{d} = (\hat{i} - \hat{j} + \hat{k}) + p(-2\hat{i} - \hat{j} - \hat{k}) \] ### Step 2: Find the Direction Vectors The direction vector of line \( L_1 \) is: \[ \bar{b} = \hat{i} + 2\hat{j} + 2\hat{k} \] The direction vector of line \( L_2 \) is: \[ \bar{d} = -2\hat{i} - \hat{j} - \hat{k} \] ### Step 3: Calculate the Vector Between Points on the Lines To find the shortest distance, we need to calculate the vector from a point on line \( L_1 \) to a point on line \( L_2 \): \[ \vec{C} - \vec{A} = \bar{c} - \bar{a} = (\hat{i} - \hat{j} + \hat{k}) - (\hat{i} - \hat{j}) = \hat{k} \] ### Step 4: Calculate the Cross Product of Direction Vectors Next, we need to calculate the cross product \( \bar{b} \times \bar{d} \): \[ \bar{b} \times \bar{d} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 2 \\ -2 & -1 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 2 & 2 \\ -1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 2 \\ -2 & -1 \end{vmatrix} \] Calculating these determinants: - For \( \hat{i} \): \( 2 \cdot (-1) - 2 \cdot (-1) = -2 + 2 = 0 \) - For \( \hat{j} \): \( 1 \cdot (-1) - 2 \cdot (-2) = -1 + 4 = 3 \) - For \( \hat{k} \): \( 1 \cdot (-1) - 2 \cdot (-2) = -1 + 4 = 3 \) Thus: \[ \bar{b} \times \bar{d} = 0\hat{i} - 3\hat{j} + 3\hat{k} = -3\hat{j} + 3\hat{k} \] ### Step 5: Calculate the Magnitude of the Cross Product The magnitude of \( \bar{b} \times \bar{d} \) is: \[ |\bar{b} \times \bar{d}| = \sqrt{0^2 + (-3)^2 + 3^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 6: Calculate the Shortest Distance The shortest distance \( d \) between the two lines is given by: \[ d = \frac{|\vec{C} - \vec{A} \cdot (\bar{b} \times \bar{d})|}{|\bar{b} \times \bar{d}|} \] Calculating \( |\vec{C} - \vec{A}| \): \[ |\hat{k}| = 1 \] Thus: \[ d = \frac{1}{3\sqrt{2}} \] This means \( k = 3\sqrt{2} \). ### Step 7: Find \( \frac{1}{k^2} \) Now, we need to find \( \frac{1}{k^2} \): \[ k^2 = (3\sqrt{2})^2 = 9 \cdot 2 = 18 \] Thus: \[ \frac{1}{k^2} = \frac{1}{18} \] ### Final Answer The value of \( \frac{1}{k^2} \) is \( \frac{1}{18} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR

    FIITJEE|Exercise MATCH THE COLUMNS|5 Videos
  • TRIGONOMETIC EQUATIONS

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

If the line barr=(hati+hatj)+lamda(2hati+hatj+4hatk) is parallel to the plane barr.(-2hati+hatk)=5 then the distance between them is

If bara=hati+hatj+hatk , bara.barb=2 and bara times barb=2hati+hatj-3hatk then

If bara =3 hati - 2hatj +7 hatk, barb = 5hati + hat j -2 hatk and barc = hati + hatj - hat k, " then find "bara * (barb xx barc) .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If bara=hati+2hatj-3hatk,barb=2hati+hatj-hatk and baru is vector satisfying bara times baru=bara times barb and bara.baru=bar0 , then 2|baru|^2 is equal to

Let A,B,C be points with position vectors 2hati-hatj+hatk,hati+2hatj+hatkand 3hati+hatj+2hatk respectively. Find the shortest distance between point B and plane OAC.

If bara=hati+hatj+hatk, barb=2hati+lambdahatj+hatk,barc=hati-hatj+4hatk and bara.(barbxxbarc)=10 , then lambda is equal to

If bara=hati+hatj+hatk, bara.barb=2 and bara times barb=2hati+hatj-3hatk then barb is equal to