Home
Class 12
MATHS
If the equations x^(2)+ax+12=0,x^(2)+bx+...

If the equations `x^(2)+ax+12=0,x^(2)+bx+15=0` and `x^(2)+(a+b)x+36=0` have a common positive root, then the ordered pair (a, b) is

A

`(-6,-8)`

B

`(-7,-8)`

C

`(-6,-7)`

D

`(-7,-9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ordered pair (a, b) such that the equations \(x^2 + ax + 12 = 0\), \(x^2 + bx + 15 = 0\), and \(x^2 + (a+b)x + 36 = 0\) have a common positive root. ### Step-by-Step Solution: 1. **Let the common positive root be \( \alpha \)**. - For the first equation \(x^2 + ax + 12 = 0\): - By Vieta's formulas, we have: \[ \alpha + \beta = -a \quad \text{(1)} \] \[ \alpha \beta = 12 \quad \text{(2)} \] 2. **For the second equation \(x^2 + bx + 15 = 0\)**: - Again using Vieta's formulas: - Let the other root be \( \gamma \): \[ \alpha + \gamma = -b \quad \text{(3)} \] \[ \alpha \gamma = 15 \quad \text{(4)} \] 3. **For the third equation \(x^2 + (a+b)x + 36 = 0\)**: - Let the other root be \( \delta \): \[ \alpha + \delta = -(a+b) \quad \text{(5)} \] \[ \alpha \delta = 36 \quad \text{(6)} \] 4. **Express \( \beta \), \( \gamma \), and \( \delta \) in terms of \( \alpha \)**: - From (2): \[ \beta = \frac{12}{\alpha} \] - From (4): \[ \gamma = \frac{15}{\alpha} \] - From (6): \[ \delta = \frac{36}{\alpha} \] 5. **Substituting values into (1), (3), and (5)**: - Substitute \( \beta \) into (1): \[ \alpha + \frac{12}{\alpha} = -a \quad \Rightarrow \quad a = -\left(\alpha + \frac{12}{\alpha}\right) \quad \text{(7)} \] - Substitute \( \gamma \) into (3): \[ \alpha + \frac{15}{\alpha} = -b \quad \Rightarrow \quad b = -\left(\alpha + \frac{15}{\alpha}\right) \quad \text{(8)} \] - Substitute \( \delta \) into (5): \[ \alpha + \frac{36}{\alpha} = -(a+b) \quad \Rightarrow \quad a + b = -\left(\alpha + \frac{36}{\alpha}\right) \quad \text{(9)} \] 6. **Using (7) and (8) in (9)**: - Substitute \( a \) and \( b \) from (7) and (8): \[ -\left(\alpha + \frac{12}{\alpha}\right) - \left(\alpha + \frac{15}{\alpha}\right) = -\left(\alpha + \frac{36}{\alpha}\right) \] - Simplifying gives: \[ -2\alpha - \frac{27}{\alpha} = -\alpha - \frac{36}{\alpha} \] - Rearranging: \[ -\alpha = -\frac{9}{\alpha} \] - Multiplying both sides by \( \alpha \) (assuming \( \alpha \neq 0 \)): \[ \alpha^2 = 9 \quad \Rightarrow \quad \alpha = 3 \quad \text{(since we need the positive root)} \] 7. **Finding \( a \) and \( b \)**: - Substitute \( \alpha = 3 \) back into (7) and (8): \[ a = -\left(3 + \frac{12}{3}\right) = -\left(3 + 4\right) = -7 \] \[ b = -\left(3 + \frac{15}{3}\right) = -\left(3 + 5\right) = -8 \] 8. **Final Ordered Pair**: - The ordered pair \( (a, b) \) is: \[ (a, b) = (-7, -8) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If the equation x^(2)+ax+12=0,x^(2)+bx+15=0 and x^(2)(a+b)x+36=0 have a common positive root,then b-2a is equal to

If equations x^(2)+ax+12=0.x^(2)+bx+15=0 and x^(2)+(a+b)x+36=0 have a common positive root,then find the values of a and b

If the equations x^(2)+ax+12=0x^(2)+bx+15=0 and x^(2)+(a+b)x+36=0 have a common root ,then which is true

If the equations x^(2) - ax + b = 0 and x^(2) + bx - a = 0 have a common root, then

If every pair of equations x^(2)+ax+bc=0,x^(2)+bx+ca=0 and x^(2)+cx+ab=0 has a common root then their sum is

If the equation ax^(2) + bx + c = 0 and 2x^(2) + 3x + 4 = 0 have a common root, then a : b : c

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. a, b, c are positive integers formaing an incresing G.P. and b-a is a ...

    Text Solution

    |

  2. a ,b ,c are positive real numbers forming a G.P. ILf a x 62+2b x+c=0a ...

    Text Solution

    |

  3. If the equations x^(2)+ax+12=0,x^(2)+bx+15=0 and x^(2)+(a+b)x+36=0 hav...

    Text Solution

    |

  4. If ax^(2)+bx+6=0 does not have two distinct real roots, a in R and b i...

    Text Solution

    |

  5. The solution set of ((3)/(5))^(x)=x-x^(2)-9 is

    Text Solution

    |

  6. The number of real roots of sin (2^x) cos (2^x) =1/4 (2^x+2^-x) is

    Text Solution

    |

  7. Let a, b, c be real numbers, a != 0. If alpha is a zero of a^2 x^2+bx...

    Text Solution

    |

  8. If alpha,beta are the roots of x^2+p x+q=0a d nx^(2n)+p^n x^n+q^n=0a n...

    Text Solution

    |

  9. If x^2+9y^2+25 z^2=x y z((15)/2+5/y+3/z),t h e n x ,y ,a n dz are in ...

    Text Solution

    |

  10. The values of 'a' for which the equation (x^2 + x + 2)^2 - ( a-3)( x^2...

    Text Solution

    |

  11. If the quadratic equations 3x^2 + ax + 1 = 0 and 2x^2 + bx + 1 = 0 h...

    Text Solution

    |

  12. If the equation ax^2 + bx + c = 0, 0 < a < b < c, has non real comple...

    Text Solution

    |

  13. If A(z(1)),B(z(2)), C(z(3)) are the vertices of an equilateral triangl...

    Text Solution

    |

  14. In triangle ABC, if cosA+2cosB+cosC=2,t h e na ,b ,c are in (A) A.P. (...

    Text Solution

    |

  15. If a(a), a (2), a (3),…., a(n) are in H.P. and f (k)=sum (r =1) ^(n) a...

    Text Solution

    |

  16. If |z(1)-1|lt 1,|z(2)-2|lt 2,|z(3)-3|lt 3, then |z(1)+z(2)+z(3)|

    Text Solution

    |

  17. Q. Let z1 and z2 be nth roots of unity which subtend a right angle at...

    Text Solution

    |

  18. Let z and omega be two non zero complex numbers such that |z|=|omega|...

    Text Solution

    |

  19. If zr=cos(pialpha)/(n^2)+isin(ralpha)/(n^2), where r=1,2,3....,n, then...

    Text Solution

    |

  20. The roots of the cubic equation (z + alpha beta)^3 = alpha^3 , alpha ...

    Text Solution

    |