Home
Class 12
MATHS
For A=[{:(4,2i),(i,1):}],(A-2l)(A-3l) is...

For `A=[{:(4,2i),(i,1):}],(A-2l)(A-3l)` is a

A

null matrix

B

Hermition matrix

C

unit matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \((A - 2I)(A - 3I)\), where \(A\) is given as the matrix: \[ A = \begin{pmatrix} 4 & 2i \\ i & 1 \end{pmatrix} \] and \(I\) is the identity matrix of the same size: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] ### Step 1: Compute \(A - 2I\) To find \(A - 2I\), we first calculate \(2I\): \[ 2I = 2 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Now, we subtract \(2I\) from \(A\): \[ A - 2I = \begin{pmatrix} 4 & 2i \\ i & 1 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 4 - 2 & 2i - 0 \\ i - 0 & 1 - 2 \end{pmatrix} = \begin{pmatrix} 2 & 2i \\ i & -1 \end{pmatrix} \] ### Step 2: Compute \(A - 3I\) Next, we calculate \(3I\): \[ 3I = 3 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \] Now, we subtract \(3I\) from \(A\): \[ A - 3I = \begin{pmatrix} 4 & 2i \\ i & 1 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 4 - 3 & 2i - 0 \\ i - 0 & 1 - 3 \end{pmatrix} = \begin{pmatrix} 1 & 2i \\ i & -2 \end{pmatrix} \] ### Step 3: Compute the product \((A - 2I)(A - 3I)\) Now we need to multiply the two matrices we obtained: \[ (A - 2I)(A - 3I) = \begin{pmatrix} 2 & 2i \\ i & -1 \end{pmatrix} \begin{pmatrix} 1 & 2i \\ i & -2 \end{pmatrix} \] Using the row-column multiplication rule, we compute each element of the resulting matrix: 1. First row, first column: \[ 2 \cdot 1 + 2i \cdot i = 2 + 2i^2 = 2 - 2 = 0 \] 2. First row, second column: \[ 2 \cdot 2i + 2i \cdot (-2) = 4i - 4i = 0 \] 3. Second row, first column: \[ i \cdot 1 + (-1) \cdot i = i - i = 0 \] 4. Second row, second column: \[ i \cdot 2i + (-1) \cdot (-2) = 2i^2 + 2 = -2 + 2 = 0 \] Putting it all together, we have: \[ (A - 2I)(A - 3I) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] This is the null matrix. ### Final Answer The result of the expression \((A - 2I)(A - 3I)\) is the null matrix. ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Let l_(i),m_(i),n_(i);i=1,2,3 be the direction cosines of three mutually perpendicular vectors in space.Show that AA=I_(3) where A=[[l_(2),m_(2),n_(2)l_(3),m_(3),n_(3)]]

Statement I: If a=2hati+hatk,b=3hatj+4hatk and c=lamda a+mub are coplanar, then c=4a-b . Statement II: A set vector a_(1),a_(2),a_(3), . . ,a_(n) is said to be linearly independent, if every relation of the form l_(1)a_(1)+l_(2)a_(2)+l_(3)a_(3)+ . . .+l_(n)a_(n)=0 implies that l_(1)=l_(2)=l_(3)= . . .=l_(n)=0 (scalar).

Let L be the set of all straight lines in plane. l_(1) and l_(2) are two lines in the set. R_(1), R_(2) and R_(3) are defined relations. (i) l_(1)R_(1)l_(2) : l_(1) is parallel to l_(2) (ii) l_(1)R_(2)l_(2) : l_(1) is perpendicular to l_(2) (iii) l_(1) R_(3)l_(2) : l_(1) intersects l_(2) Then which of the following is true ?

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

Graph of a function y=f(x) is shown in the adjacent figure.Four limits l_(1),l_(2),l_(3) and I_(4), are given as:

Consider the lines given by L_(1):x+3y-5=0," "L_(2):3x-ky-1=0" "L_(3):5x+2y-12=0 {:(,"Column-I",,"Column-II"),((A),","L_(1)","L_(2)","L_(3)" are concurrent, if",(p),k=-9),((B)," One of "L_(1)","L_(2)","L_(3)" is parallel to at least one of the other two, if",(q),k=-6/5),((C),L_(1)","L_(2)","L_(3)" from a triangle, if",(r),k=5/6),((D),L_(1)","L_(2)","L_(3)" do not from a triangle, if",(s),k=5):}

If points (h,k) (1,2) and (-3, 4) lie on line L_(1) and points (h,k) and (4,3) lie on L_(2). If L_(2) is perpendicular to L_(1), then value of (h)/(k) is

Show that the matris [[l_(1),m_(1),n_(1)],[l_(2),m_(2),n_(2)],[l_(3),m_(3),n_(3)]] is orthogonal, if l_(1)^(2) + m_(1)^(2) + n_(1)^(2) = Sigmal_(1)^(2) = 1 = Sigma l_(2)^(2) = Sigma_(3) ^(2) and l_(1) l_(2) + m_(1)m_(2) + n_(1) n_(2) = Sigma l_(1)l_(2) =0 = Sigma l_(2)l_(3) = Sigma l_(3) l_(1).

Given P_n and Q_n, are the square matrices of order 3 such that, P_n=[a_(ij)],Q_n=[b_(ij)] where a_(ij)=(3i+j)/(4^2n),b_(ij)=(3i-j)/2^(2n) for all 'i' and 'j' 1 leq i.j leq 3 .If L_1=lim_(x->oo) T_r(4P_i+4^2P_2+4^3P_3+...........+4^nP_n) and L_2=lim_9n->oo) T_r (2Q_1+2^2Q_2+2^3Q_3+..........+2^nQ_n, then the value of (L_1 + L_2) is ( where T_r (A) denotes the trace of matrix A.)

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. Let there is an A.P. with common difference 4 such that the squares of...

    Text Solution

    |

  2. If P is a two-rowed matrix satisfying P' = P^(-1), then P can be

    Text Solution

    |

  3. For A=[{:(4,2i),(i,1):}],(A-2l)(A-3l) is a

    Text Solution

    |

  4. If square matrices A and B are such that "AA"^(theta),"BB"^(theta)=B^(...

    Text Solution

    |

  5. Matrix A has x rows and x+5 columns. Matrix B has y rows and 11-y colu...

    Text Solution

    |

  6. If A^(k)=0 (null matrix) for some value of k, then l+A+A^(2)+…A^(k-1) ...

    Text Solution

    |

  7. If A is the n xx n matrix whose elements are all '1' and B is the n xx...

    Text Solution

    |

  8. If M is a 3xx3 matrix, where det M=1a n dM M^T=1,w h e r eI is an iden...

    Text Solution

    |

  9. if A=[{:(alpha,2),(2, alpha):}] and |A^(3)|=125 then the value of alph...

    Text Solution

    |

  10. Let A=[1 0 0 0 1 1 0-2 4],I=[1 0 0 0 1 0 0 0 1]a n dA^(-1)=[1/6(A^2+c ...

    Text Solution

    |

  11. for A=[{:(4,2i),(i,1):}],(A-2l)(A-3l) is a

    Text Solution

    |

  12. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  13. Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cose...

    Text Solution

    |

  14. The square of sum of the roots of the equation x^(3)+2x^(2)+2x+1=0 equ...

    Text Solution

    |

  15. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  16. The coefficient of x^(p)" in"(1+x)^(p)+(1+x)^(p+1)+…+(1+x)^(n), p lt...

    Text Solution

    |

  17. 2C0+2^2/2 C1+2^3/3 C2+.............+2^11/11 C10 =?

    Text Solution

    |

  18. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  19. If x^(2)+ax+b=0 and x^(2)+bx+a=0,(a ne b) have a common root, then a+b...

    Text Solution

    |

  20. Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)...

    Text Solution

    |