Home
Class 12
MATHS
If bar(A(1))bar(B) and bar( C ) are thre...

If `bar(A_(1))bar(B)` and `bar( C )` are three non-coplanar voctors, then `(vec(B).(vec(A)xx vec( C )))/((vec( C )xx vec(A)).vec(B))+(vec(B).(vec(A)xx vec( C )))/(vec( C ).(vec(A)xx vec(B)))` is equal to

A

2

B

`-2`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{(\vec{C} \times \vec{A}) \cdot \vec{B}} + \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step-by-Step Solution: 1. **Identify the Scalar Triple Product**: The expression \(\vec{B} \cdot (\vec{A} \times \vec{C})\) represents the scalar triple product, which can be denoted as \([ \vec{A}, \vec{B}, \vec{C} ]\). This can also be represented as the determinant of a matrix formed by the vectors \(\vec{A}, \vec{B}, \vec{C}\): \[ [ \vec{A}, \vec{B}, \vec{C} ] = \begin{vmatrix} \vec{A} \\ \vec{B} \\ \vec{C} \end{vmatrix} \] 2. **Rewrite the Expression**: Using the notation for the scalar triple product, we can rewrite the expression as: \[ \frac{[\vec{B}, \vec{A}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} + \frac{[\vec{B}, \vec{A}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} \] This simplifies to: \[ 2 \cdot \frac{[\vec{B}, \vec{A}, \vec{C}]}{[\vec{C}, \vec{A}, \vec{B}]} \] 3. **Use Properties of Determinants**: We know that interchanging two rows of a determinant changes its sign. Therefore, if we interchange \(\vec{B}\) and \(\vec{C}\) in the determinant \([\vec{C}, \vec{A}, \vec{B}]\), we get: \[ [\vec{C}, \vec{A}, \vec{B}] = -[\vec{B}, \vec{A}, \vec{C}] \] 4. **Substitute in the Expression**: Substituting this result into our expression gives: \[ 2 \cdot \frac{[\vec{B}, \vec{A}, \vec{C}]}{-[\vec{B}, \vec{A}, \vec{C}]} = 2 \cdot -1 = -2 \] 5. **Final Result**: Therefore, the value of the given expression is: \[ \boxed{-2} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vec c are three non coplanar vectors , then the value of (vec a.(vec b xx vec c) )/((vec c xx vec a).vec b) + ( vecb.(vec a xx vec c ))/(vec c.(vec a xx vec b)) is

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

(vec(d) + vec(a)).(vec(a) xx (vec(b) xx (vec(c) xx vec(d)))) simplifies to

Prove that vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0

For any three vectors vec(A), vec(B) and vec(C) prove that vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. Find a unit vector perpendicular to the plane determined by the poi...

    Text Solution

    |

  2. The area of the triangle whose vertices are A(1,-1,2),B(2,1-1)C(3...

    Text Solution

    |

  3. If bar(A(1))bar(B) and bar( C ) are three non-coplanar voctors, then (...

    Text Solution

    |

  4. If vecA = (1, 1, 1), vecC = (0,1,-1) are given vectors, then prove tha...

    Text Solution

    |

  5. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  6. The vector vec a has the components 2p and 1 w.r.t. a rectangular ...

    Text Solution

    |

  7. If the vectors ahati+hatj+hatk, hati+bhatj+hatk, hati+hatj+chatk(a!=1,...

    Text Solution

    |

  8. let vec b = 4 hat i + 3 hat jLet vec c be a vector perpendicular to ve...

    Text Solution

    |

  9. If vec xa n d vec y are two non-collinear vectors and a, b, and c ...

    Text Solution

    |

  10. If a makes the same angle alpha, with the lines vec( r )=lambda(hati+h...

    Text Solution

    |

  11. A plane meets the coordinate axes at A, B, C such that the centroid of...

    Text Solution

    |

  12. The direction cosines of two lines are related by l + m + n = 0 and al...

    Text Solution

    |

  13. Projection of the line x+y+z-3=0=2x+3y+4z-6 on the plane z=0 is

    Text Solution

    |

  14. The distance of the point (1,-2,3) from the plane x-y+z=5 measured par...

    Text Solution

    |

  15. (l(1),m(1),n(1)),(l(2),m(2),n(2)),(l(3),m(3),n(3)) are the direction c...

    Text Solution

    |

  16. A plane a constant distance p from the origin meets the coordinate axe...

    Text Solution

    |

  17. The equations to the straight line through (a, b, c) parallel to the z...

    Text Solution

    |

  18. if the lines (x-1)/2=(y-1)/3=(z-1)/4 and (x-3)/2=(y-k)/1=z/1 intersect...

    Text Solution

    |

  19. The shortest distance between a diagonal of a cube, of edge-length one...

    Text Solution

    |

  20. The planes x=cy+bz,y=az+cx,z=bx+ay intersect in a line if (a+b+c)^(2) ...

    Text Solution

    |