Home
Class 12
MATHS
If a makes the same angle alpha, with th...

If a makes the same angle `alpha`, with the lines `vec( r )=lambda(hati+hatj+hatk),vec( r )=mu hati` and `vec( r )=v hatj` then `sec^(2)alpha` is equal to

A

`9+4sqrt(3)`

B

`4+9sqrt(3)`

C

`9-4sqrt(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sec^2 \alpha \) given that a vector \( \vec{A} \) makes the same angle \( \alpha \) with the lines represented by the vectors \( \vec{r_1} = \lambda (\hat{i} + \hat{j} + \hat{k}) \), \( \vec{r_2} = \mu \hat{i} \), and \( \vec{r_3} = v \hat{j} \). ### Step 1: Identify Direction Vectors The direction vectors for the lines are: - For \( \vec{r_1} \): \( \vec{d_1} = \hat{i} + \hat{j} + \hat{k} \) - For \( \vec{r_2} \): \( \vec{d_2} = \hat{i} \) - For \( \vec{r_3} \): \( \vec{d_3} = \hat{j} \) ### Step 2: Calculate Magnitude of Direction Vectors The magnitudes of the direction vectors are: - \( |\vec{d_1}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \) - \( |\vec{d_2}| = 1 \) - \( |\vec{d_3}| = 1 \) ### Step 3: Set Up Dot Products Since \( \vec{A} \) makes the same angle \( \alpha \) with each direction vector, we can express the dot products as follows: 1. \( \vec{A} \cdot \vec{d_1} = |\vec{A}| |\vec{d_1}| \cos \alpha \) 2. \( \vec{A} \cdot \vec{d_2} = |\vec{A}| |\vec{d_2}| \cos \alpha \) 3. \( \vec{A} \cdot \vec{d_3} = |\vec{A}| |\vec{d_3}| \cos \alpha \) ### Step 4: Express Dot Products Let \( \vec{A} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \). - For \( \vec{d_1} \): \[ \vec{A} \cdot \vec{d_1} = a_1 + a_2 + a_3 = |\vec{A}| \sqrt{3} \cos \alpha \] - For \( \vec{d_2} \): \[ \vec{A} \cdot \vec{d_2} = a_1 = |\vec{A}| \cos \alpha \] - For \( \vec{d_3} \): \[ \vec{A} \cdot \vec{d_3} = a_2 = |\vec{A}| \cos \alpha \] ### Step 5: Relate the Components From the equations: 1. \( a_1 + a_2 + a_3 = |\vec{A}| \sqrt{3} \cos \alpha \) 2. \( a_1 = |\vec{A}| \cos \alpha \) 3. \( a_2 = |\vec{A}| \cos \alpha \) Substituting \( a_1 \) and \( a_2 \) into the first equation: \[ |\vec{A}| \cos \alpha + |\vec{A}| \cos \alpha + a_3 = |\vec{A}| \sqrt{3} \cos \alpha \] This simplifies to: \[ 2 |\vec{A}| \cos \alpha + a_3 = |\vec{A}| \sqrt{3} \cos \alpha \] Thus, \[ a_3 = |\vec{A}| \sqrt{3} \cos \alpha - 2 |\vec{A}| \cos \alpha = |\vec{A}| (\sqrt{3} - 2) \cos \alpha \] ### Step 6: Calculate Magnitude of \( \vec{A} \) The magnitude of \( \vec{A} \) is given by: \[ |\vec{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \] Substituting \( a_1 \), \( a_2 \), and \( a_3 \): \[ |\vec{A}| = \sqrt{(|\vec{A}| \cos \alpha)^2 + (|\vec{A}| \cos \alpha)^2 + (|\vec{A}| (\sqrt{3} - 2) \cos \alpha)^2} \] This simplifies to: \[ |\vec{A}| = |\vec{A}| \cos \alpha \sqrt{2 + (\sqrt{3} - 2)^2} \] Calculating \( (\sqrt{3} - 2)^2 = 3 - 4\sqrt{3} + 4 = 7 - 4\sqrt{3} \): \[ |\vec{A}| = |\vec{A}| \cos \alpha \sqrt{2 + 7 - 4\sqrt{3}} = |\vec{A}| \cos \alpha \sqrt{9 - 4\sqrt{3}} \] ### Step 7: Find \( \sec^2 \alpha \) Now, we know: \[ |\vec{A}|^2 = (|\vec{A}| \cos \alpha)^2 (9 - 4\sqrt{3}) \] Dividing both sides by \( (|\vec{A}| \cos \alpha)^2 \): \[ \sec^2 \alpha = \frac{|\vec{A}|^2}{(|\vec{A}| \cos \alpha)^2} = 9 - 4\sqrt{3} \] ### Final Answer Thus, the value of \( \sec^2 \alpha \) is: \[ \sec^2 \alpha = 9 - 4\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

What is the projection of vec(A) = hati + hatj+ hatk on vec(B) = (hati + hatk)

Find the acute angle between the plane : vec(r). (hati - 2hatj - 2 hatk) = 1 and vec(r). (3 hati - 6 hatj + 2 hatk) = 0

Find the angle between the vertors vec(A) = hati + 2hatj - hatk and vec(B) = - hati +hatj - 2hatk .

Find the angle between the vectors vec A = hati + hatj + hatk and vec B =-hati - hatj + 2hatk .

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Find the sine of the angle between the vectors vec(A) = 3 hati - 4hatj +5hatk and vec(B) = hati - hatj +hatk .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Find the angle between the vectors vec(A) = 2 hati - 4hatj +6 hatk and vec(B) = 3 hati + hatj +2hatk .

Find the area of the triangle formed by the tips of the vectors vec(a) = hati - hatj - 3hatk, vec(b) = 4hati - 3hatj +hatk and vec(c) = 3 hati - hatj +2 hatk .

(i) show that the line : vec(r) = 2 hati - 3 hatj + 5 hatk + lambda (hati - hatj + 2 hatk) lies in the plane vec(r) . (3 hat(i) + hatj - hatk ) + 2 = 0 . (ii) Show that the line : vec(r) = hati + hatj + lambda (2 hati + hatj + 4 hatk) lies in the plane vec(r). (hati + 2 hatj - hatk ) = 3.

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. let vec b = 4 hat i + 3 hat jLet vec c be a vector perpendicular to ve...

    Text Solution

    |

  2. If vec xa n d vec y are two non-collinear vectors and a, b, and c ...

    Text Solution

    |

  3. If a makes the same angle alpha, with the lines vec( r )=lambda(hati+h...

    Text Solution

    |

  4. A plane meets the coordinate axes at A, B, C such that the centroid of...

    Text Solution

    |

  5. The direction cosines of two lines are related by l + m + n = 0 and al...

    Text Solution

    |

  6. Projection of the line x+y+z-3=0=2x+3y+4z-6 on the plane z=0 is

    Text Solution

    |

  7. The distance of the point (1,-2,3) from the plane x-y+z=5 measured par...

    Text Solution

    |

  8. (l(1),m(1),n(1)),(l(2),m(2),n(2)),(l(3),m(3),n(3)) are the direction c...

    Text Solution

    |

  9. A plane a constant distance p from the origin meets the coordinate axe...

    Text Solution

    |

  10. The equations to the straight line through (a, b, c) parallel to the z...

    Text Solution

    |

  11. if the lines (x-1)/2=(y-1)/3=(z-1)/4 and (x-3)/2=(y-k)/1=z/1 intersect...

    Text Solution

    |

  12. The shortest distance between a diagonal of a cube, of edge-length one...

    Text Solution

    |

  13. The planes x=cy+bz,y=az+cx,z=bx+ay intersect in a line if (a+b+c)^(2) ...

    Text Solution

    |

  14. A square ABCD of diagonal length 2a, is folded along the diagonal AC s...

    Text Solution

    |

  15. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  16. The solution set of the equation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  17. The system of equations lambdax+y+z=0,-x+lambday+z=0,-x-y+lambdaz=0 wi...

    Text Solution

    |

  18. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  19. Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2), where z is a com...

    Text Solution

    |

  20. If (1+ i sqrt(3))^(1999)=a+ib, then

    Text Solution

    |