Home
Class 12
MATHS
(l(1),m(1),n(1)),(l(2),m(2),n(2)),(l(3),...

`(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3))` are the direction cosines of three mutually perpendicular lines. If the line, whose direction ratios are `l_(1)+l_(2)+l_(3),m_(1)+m_(2)+m_(3),n_(1)+n_(2)+n_(3)`, makes angle `theta` with any of these three lines, then `cos theta` is equal to

A

`(1)/(2)`

B

`(1)/(3)`

C

`(1)/(sqrt(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cosine of the angle \( \theta \) between the line represented by the direction ratios \( (l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3) \) and any of the three mutually perpendicular lines represented by their direction cosines \( (l_1, m_1, n_1) \), \( (l_2, m_2, n_2) \), and \( (l_3, m_3, n_3) \). ### Step-by-Step Solution: 1. **Define the Direction Vectors:** Let the direction vectors of the three mutually perpendicular lines be: \[ \mathbf{A} = (l_1, m_1, n_1), \quad \mathbf{B} = (l_2, m_2, n_2), \quad \mathbf{C} = (l_3, m_3, n_3) \] 2. **Define the New Direction Vector:** The direction vector of the new line is given by: \[ \mathbf{P} = (l_1 + l_2 + l_3, m_1 + m_2 + m_3, n_1 + n_2 + n_3) \] 3. **Calculate the Cosine of the Angle:** The cosine of the angle \( \theta \) between two vectors \( \mathbf{A} \) and \( \mathbf{P} \) can be calculated using the dot product formula: \[ \cos \theta = \frac{\mathbf{A} \cdot \mathbf{P}}{|\mathbf{A}| |\mathbf{P}|} \] where \( \mathbf{A} \cdot \mathbf{P} \) is the dot product of \( \mathbf{A} \) and \( \mathbf{P} \). 4. **Calculate the Dot Product:** The dot product \( \mathbf{A} \cdot \mathbf{P} \) is: \[ \mathbf{A} \cdot \mathbf{P} = l_1(l_1 + l_2 + l_3) + m_1(m_1 + m_2 + m_3) + n_1(n_1 + n_2 + n_3) \] Expanding this gives: \[ = l_1^2 + l_1l_2 + l_1l_3 + m_1^2 + m_1m_2 + m_1m_3 + n_1^2 + n_1n_2 + n_1n_3 \] 5. **Use the Properties of Direction Cosines:** Since \( \mathbf{A}, \mathbf{B}, \mathbf{C} \) are mutually perpendicular, we know: \[ l_1^2 + m_1^2 + n_1^2 = 1 \] and similarly for \( \mathbf{B} \) and \( \mathbf{C} \). The cross terms \( l_1l_2, m_1m_2, n_1n_2 \) etc., will equal zero due to orthogonality. 6. **Calculate the Magnitude of the Vectors:** The magnitude of \( \mathbf{A} \) is: \[ |\mathbf{A}| = \sqrt{l_1^2 + m_1^2 + n_1^2} = 1 \] The magnitude of \( \mathbf{P} \) is: \[ |\mathbf{P}| = \sqrt{(l_1 + l_2 + l_3)^2 + (m_1 + m_2 + m_3)^2 + (n_1 + n_2 + n_3)^2} \] 7. **Final Calculation of Cosine:** Since the direction cosines are normalized, we can simplify: \[ \cos \theta = \frac{1}{|\mathbf{P}|} \] 8. **Conclusion:** Therefore, the final result for \( \cos \theta \) is: \[ \cos \theta = \frac{1}{\sqrt{(l_1 + l_2 + l_3)^2 + (m_1 + m_2 + m_3)^2 + (n_1 + n_2 + n_3)^2}} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos
FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. Projection of the line x+y+z-3=0=2x+3y+4z-6 on the plane z=0 is

    Text Solution

    |

  2. The distance of the point (1,-2,3) from the plane x-y+z=5 measured par...

    Text Solution

    |

  3. (l(1),m(1),n(1)),(l(2),m(2),n(2)),(l(3),m(3),n(3)) are the direction c...

    Text Solution

    |

  4. A plane a constant distance p from the origin meets the coordinate axe...

    Text Solution

    |

  5. The equations to the straight line through (a, b, c) parallel to the z...

    Text Solution

    |

  6. if the lines (x-1)/2=(y-1)/3=(z-1)/4 and (x-3)/2=(y-k)/1=z/1 intersect...

    Text Solution

    |

  7. The shortest distance between a diagonal of a cube, of edge-length one...

    Text Solution

    |

  8. The planes x=cy+bz,y=az+cx,z=bx+ay intersect in a line if (a+b+c)^(2) ...

    Text Solution

    |

  9. A square ABCD of diagonal length 2a, is folded along the diagonal AC s...

    Text Solution

    |

  10. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  11. The solution set of the equation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  12. The system of equations lambdax+y+z=0,-x+lambday+z=0,-x-y+lambdaz=0 wi...

    Text Solution

    |

  13. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  14. Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2), where z is a com...

    Text Solution

    |

  15. If (1+ i sqrt(3))^(1999)=a+ib, then

    Text Solution

    |

  16. If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0. If ...

    Text Solution

    |

  17. The value of (1)/(81^(n))-(10)/(81^(n)).""^(2n)C(2)-(10^(3))/(81^(n))....

    Text Solution

    |

  18. The unit digit of (3+sqrt(5))^(2013)+(3-sqrt(5))^(2013) is

    Text Solution

    |

  19. 3""^(n)C(0)+10""^(n)C(1)+28""^(n)C(2)+82""^(n)C(3)+…(n+1) terms =

    Text Solution

    |

  20. A and B are two non-singular square matrices of each 3xx3 such that AB...

    Text Solution

    |