Home
Class 12
MATHS
The planes x=cy+bz,y=az+cx,z=bx+ay inter...

The planes `x=cy+bz,y=az+cx,z=bx+ay` intersect in a line if `(a+b+c)^(2)` is equal to

A

`1-abc+ab+ac+bc`

B

`a-2abc+2ab+2bc+2ca`

C

`1-abc+2ab+2bc+2ca`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the condition under which the planes \( x = cy + bz \), \( y = az + cx \), and \( z = bx + ay \) intersect in a line, we can follow these steps: ### Step 1: Rewrite the equations of the planes We start with the given equations of the planes: 1. \( x - cy - bz = 0 \) (Plane P1) 2. \( -cx + y - az = 0 \) (Plane P2) 3. \( -bx - ay + z = 0 \) (Plane P3) ### Step 2: Formulate the system of equations We can represent the system of equations in matrix form: \[ \begin{bmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 3: Determine the condition for a non-trivial solution For the system to have a non-trivial solution (i.e., a solution other than \( x = 0, y = 0, z = 0 \)), the determinant of the coefficient matrix must be zero: \[ \text{det} \begin{bmatrix} 1 & -c & -b \\ -c & 1 & -a \\ -b & -a & 1 \end{bmatrix} = 0 \] ### Step 4: Calculate the determinant Calculating the determinant, we have: \[ \text{det} = 1 \cdot \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} - (-c) \cdot \begin{vmatrix} -c & -a \\ -b & 1 \end{vmatrix} - (-b) \cdot \begin{vmatrix} -c & 1 \\ -b & -a \end{vmatrix} \] Calculating these 2x2 determinants: 1. \( \begin{vmatrix} 1 & -a \\ -a & 1 \end{vmatrix} = 1 + a^2 \) 2. \( \begin{vmatrix} -c & -a \\ -b & 1 \end{vmatrix} = -c + ab \) 3. \( \begin{vmatrix} -c & 1 \\ -b & -a \end{vmatrix} = ac - b \) Putting it all together: \[ \text{det} = 1(1 + a^2) + c(c - ab) + b(ac - b) \] Simplifying this gives: \[ 1 + a^2 + c^2 - abc + ac - b^2 \] ### Step 5: Set the determinant to zero Setting the determinant to zero for the condition of intersection: \[ 1 + a^2 + b^2 + c^2 - abc = 0 \] ### Step 6: Rearranging the equation Rearranging gives: \[ a^2 + b^2 + c^2 + 2abc = 1 \] ### Step 7: Find \( (a + b + c)^2 \) Using the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] We substitute \( a^2 + b^2 + c^2 = 1 - 2abc \): \[ (a + b + c)^2 = (1 - 2abc) + 2(ab + ac + bc) \] ### Conclusion Thus, the condition for the planes to intersect in a line is: \[ (a + b + c)^2 = 1 - 2abc + 2(ab + ac + bc) \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(2)+b^(2)+c^(2)+2abc is equal to

If the three planes x=5,2x-5ay+3z-2=0 and 3bx+y-3z=0 contain a common line, then (a,b) is equal to

Let a,b,c, be any real number. Suppose that there are real numbers x,y,z not all zero such that x=cy+bz,y=az+cx and z=bx+ay. Then a^(2)+b^(2)+c^(2) +2abc is equal to

Under what condition do the planes bx-ay=n,cy-bz=l,az-cx=m intersect in a line?

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x = cy +bz, y = az + cx, z = bx+ ay where x,y and z are not all zero, then a^2 + b^2 + c^2 + 2abc = ___________

Under what condition do the planes bx-ay=n,cy-bz=l,az-cx=m interest in a line?

If =cy+bz,y=az+cx,z=x+ay, wherex ,yx=cy+bz,y=az+cx,z=x+ay, wherex ,y are not all zeros,then find the value of a^(2)+b^(2)+c^(2)+2abc

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. if the lines (x-1)/2=(y-1)/3=(z-1)/4 and (x-3)/2=(y-k)/1=z/1 intersect...

    Text Solution

    |

  2. The shortest distance between a diagonal of a cube, of edge-length one...

    Text Solution

    |

  3. The planes x=cy+bz,y=az+cx,z=bx+ay intersect in a line if (a+b+c)^(2) ...

    Text Solution

    |

  4. A square ABCD of diagonal length 2a, is folded along the diagonal AC s...

    Text Solution

    |

  5. "Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^...

    Text Solution

    |

  6. The solution set of the equation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  7. The system of equations lambdax+y+z=0,-x+lambday+z=0,-x-y+lambdaz=0 wi...

    Text Solution

    |

  8. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  9. Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2), where z is a com...

    Text Solution

    |

  10. If (1+ i sqrt(3))^(1999)=a+ib, then

    Text Solution

    |

  11. If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0. If ...

    Text Solution

    |

  12. The value of (1)/(81^(n))-(10)/(81^(n)).""^(2n)C(2)-(10^(3))/(81^(n))....

    Text Solution

    |

  13. The unit digit of (3+sqrt(5))^(2013)+(3-sqrt(5))^(2013) is

    Text Solution

    |

  14. 3""^(n)C(0)+10""^(n)C(1)+28""^(n)C(2)+82""^(n)C(3)+…(n+1) terms =

    Text Solution

    |

  15. A and B are two non-singular square matrices of each 3xx3 such that AB...

    Text Solution

    |

  16. A, B, C are three non-zero matrices such that ABC = O, which of the fo...

    Text Solution

    |

  17. If A is skew symmetric matrix, then I - A is (where I is identity matr...

    Text Solution

    |

  18. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  19. Let M(n)=[m("ij")] denotes a square matrix of order n with entries as ...

    Text Solution

    |

  20. If A+B+C=pi, then the value of determinant |{:(sin^(2)A, cotA,1),(sin^...

    Text Solution

    |