Home
Class 12
MATHS
If (1+ i sqrt(3))^(1999)=a+ib, then...

If `(1+ i sqrt(3))^(1999)=a+ib`, then

A

`a=2^(1998),b=2^(1998)sqrt(3)`

B

`a=2^(1999),b=2^(1999)sqrt(3)`

C

`a=-2^(1998),b=-2^(1998)sqrt(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \((1 + i \sqrt{3})^{1999} = a + ib\), we will convert the complex number into polar form and then apply De Moivre's theorem. ### Step 1: Convert to Polar Form First, we need to find the modulus \( r \) and the argument \( \theta \) of the complex number \( 1 + i \sqrt{3} \). 1. **Calculate the modulus \( r \)**: \[ r = |1 + i \sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1 + 3} = \sqrt{4} = 2 \] 2. **Calculate the argument \( \theta \)**: \[ \theta = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{\sqrt{3}}{1}\right) = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3} \] Thus, we can express \( 1 + i \sqrt{3} \) in polar form as: \[ 1 + i \sqrt{3} = 2 \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \right) \] ### Step 2: Apply De Moivre's Theorem Now we can raise this polar form to the power of 1999: \[ (1 + i \sqrt{3})^{1999} = \left(2 \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right)\right)\right)^{1999} \] Using De Moivre's theorem: \[ = 2^{1999} \left( \cos\left(1999 \cdot \frac{\pi}{3}\right) + i \sin\left(1999 \cdot \frac{\pi}{3}\right) \right) \] ### Step 3: Simplify the Argument Next, we need to simplify \( 1999 \cdot \frac{\pi}{3} \): \[ 1999 \cdot \frac{\pi}{3} = \frac{1999\pi}{3} \] To find the equivalent angle in the range \( [0, 2\pi) \), we can subtract multiples of \( 2\pi \): \[ \frac{1999\pi}{3} = 666\pi + \frac{\pi}{3} \quad (\text{since } 666 \cdot 3 = 1998) \] Thus, the angle simplifies to: \[ \frac{1999\pi}{3} \equiv \frac{\pi}{3} \quad (\text{mod } 2\pi) \] ### Step 4: Substitute Back Now we substitute back into the expression: \[ (1 + i \sqrt{3})^{1999} = 2^{1999} \left( \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \right) \] Using the values of cosine and sine: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] So we have: \[ = 2^{1999} \left( \frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \] \[ = 2^{1999} \cdot \frac{1}{2} + i \cdot 2^{1999} \cdot \frac{\sqrt{3}}{2} \] \[ = 2^{1998} + i \cdot 2^{1998} \sqrt{3} \] ### Final Result Thus, we can express \( a \) and \( b \) as: \[ a = 2^{1998}, \quad b = 2^{1998} \sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

IF (sqrt(3)+i)^(10)=a+ib, then a and b are respectively

If (sqrt(3)+i)^(100)=2^(99)(a+ib), then find

If (sqrt(8)+i)^(50)=3^(49)(a+ib), then find the value of a^(2)+b^(2)

If sqrt((1+i)/(1-i))=(a+ib) then show that (a^(2)+b^(2))=1 .

If sqrt(3)+i=(a+ib)(c+id), then find the value of tan^(-1)(b/a)+tan^(-1)(d/c)

If ((1-i)/(1+i))^(100)=a+ib,f in d(a,b)

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0, then th...

    Text Solution

    |

  2. Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2), where z is a com...

    Text Solution

    |

  3. If (1+ i sqrt(3))^(1999)=a+ib, then

    Text Solution

    |

  4. If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0. If ...

    Text Solution

    |

  5. The value of (1)/(81^(n))-(10)/(81^(n)).""^(2n)C(2)-(10^(3))/(81^(n))....

    Text Solution

    |

  6. The unit digit of (3+sqrt(5))^(2013)+(3-sqrt(5))^(2013) is

    Text Solution

    |

  7. 3""^(n)C(0)+10""^(n)C(1)+28""^(n)C(2)+82""^(n)C(3)+…(n+1) terms =

    Text Solution

    |

  8. A and B are two non-singular square matrices of each 3xx3 such that AB...

    Text Solution

    |

  9. A, B, C are three non-zero matrices such that ABC = O, which of the fo...

    Text Solution

    |

  10. If A is skew symmetric matrix, then I - A is (where I is identity matr...

    Text Solution

    |

  11. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  12. Let M(n)=[m("ij")] denotes a square matrix of order n with entries as ...

    Text Solution

    |

  13. If A+B+C=pi, then the value of determinant |{:(sin^(2)A, cotA,1),(sin^...

    Text Solution

    |

  14. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  15. The value of a for which the system of equations , a^(3)x + (a + 1)^(3...

    Text Solution

    |

  16. The number of 'n' digit numbers such that no two consecutive digits ar...

    Text Solution

    |

  17. The number of permutations {a(1),a(2),…,a(10)} of {1,2,3,…,10} satisfy...

    Text Solution

    |

  18. You are given an unlimited supply of each of the digits 1, 2, 3, or 4....

    Text Solution

    |

  19. In a certain test, there are n questions. In this, 2^( n-r ) students ...

    Text Solution

    |

  20. Consider the equation (xy)/(x+y)=2^(3)3^(4)5^(6) then the number of po...

    Text Solution

    |