Home
Class 12
MATHS
If A+B+C=pi, then the value of determina...

If `A+B+C=pi`, then the value of determinant `|{:(sin^(2)A, cotA,1),(sin^(2)B,cotB,1),(sin^(2)C,cot C,1):}|` is equal to

A

0

B

1

C

`-1`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} \sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1 \end{vmatrix} \] given that \( A + B + C = \pi \), we can follow these steps: ### Step 1: Write the Determinant We start with the determinant as given: \[ D = \begin{vmatrix} \sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1 \end{vmatrix} \] ### Step 2: Apply Row Operations We can perform row operations to simplify the determinant. We can subtract the third column from the first two columns: 1. \( R_1 \rightarrow R_1 - R_3 \) 2. \( R_2 \rightarrow R_2 - R_3 \) 3. \( R_3 \) remains unchanged. This gives us: \[ D = \begin{vmatrix} \sin^2 A - 1 & \cot A - 1 & 1 \\ \sin^2 B - 1 & \cot B - 1 & 1 \\ \sin^2 C - 1 & \cot C - 1 & 1 \end{vmatrix} \] ### Step 3: Recognize Trigonometric Identities Using the identity \( \sin^2 x = 1 - \cos^2 x \), we can rewrite \( \sin^2 A - 1 \) as \( -\cos^2 A \), \( \sin^2 B - 1 \) as \( -\cos^2 B \), and \( \sin^2 C - 1 \) as \( -\cos^2 C \). Therefore, we have: \[ D = \begin{vmatrix} -\cos^2 A & \cot A - 1 & 1 \\ -\cos^2 B & \cot B - 1 & 1 \\ -\cos^2 C & \cot C - 1 & 1 \end{vmatrix} \] ### Step 4: Factor Out -1 We can factor out -1 from the first column: \[ D = -1 \begin{vmatrix} \cos^2 A & \cot A - 1 & 1 \\ \cos^2 B & \cot B - 1 & 1 \\ \cos^2 C & \cot C - 1 & 1 \end{vmatrix} \] ### Step 5: Further Simplification Now we can simplify the determinant further. Notice that \( \cot A = \frac{\cos A}{\sin A} \), so \( \cot A - 1 = \frac{\cos A - \sin A}{\sin A} \). Thus, we can rewrite the determinant as: \[ D = -1 \begin{vmatrix} \cos^2 A & \frac{\cos A - \sin A}{\sin A} & 1 \\ \cos^2 B & \frac{\cos B - \sin B}{\sin B} & 1 \\ \cos^2 C & \frac{\cos C - \sin C}{\sin C} & 1 \end{vmatrix} \] ### Step 6: Evaluate the Determinant Using properties of determinants and the fact that \( A + B + C = \pi \), we can conclude that the determinant evaluates to zero because the rows become linearly dependent due to the angle sum identity. Thus, we find that: \[ D = 0 \] ### Final Answer The value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|21 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If A+B+C =pi , then the value of determinant |{:(sin^2A,cotA,1),(sin^2B,cotB,1),(sin^2C,cotC,1):}| is equal to

For any triangleABC, the value of determinant |[sin^2A,cotA,1],[sin^2B,cotB,1],[sin^2C,cotC,1]| is:

If A + B+C = pi, then the value of |(cos(A+b+C),cos B,cos C),(-sin B,0,cot A),(sin(A+B),-cot A,0)| is

In a Delta ABC , a, b, c are sides and A, B, C are angles opposite to them, then the value of the determinant |(a^(2),b sin A,c sin A),(b sin A,1,cos A),(c sin A,cos A,1)| , is

In /_ABC if cos A cos B+sin A sin B sin C=1, then the value of (sin^(2)A)/(sin^(2)B)+2(sin^(2)B)/(sin^(2)C)+(sin^(2)C)/(sin^(2)A) is equal to

If A, B, C are angle of a triangle ABC, then the value of the determinant |(sin (A/2), sin (B/2), sin (C/2)), (sin(A+B+C), sin(B/2), cos(A/2)), (cos((A+B+C)/2), tan(A+B+C), sin (C/2))| is less than or equal to

If A+B+C=pi, then the value of |[sin(A+B+C),sin(A+C),cosC],[-sinB,0,tanC],[cos(A+B),tan(B+C),0]|is equal to (a)0 (b) 1 (c) 2sinBtanAcosC (d) none of these

If alpha in(-(3 pi)/(2),-pi), then the value of tan^(-1)(cot alpha)-cot^(-1)(tan alpha)+sin^(-1)(sin alpha)+cos^(-1)(cot alpha) is equal to (a)2 pi+alpha(b)pi+alpha(c)0(d)pi-alpha

If f(theta)=det[[sin^(2)A,cot A,1sin^(2)B,cos B,1sin^(2)B,cos B,1sin^(2)C,cos C,1]], then (a) sin^(2)A+sin B+c(b)cot A cot B cot C(c)sin^(2)A+sin^(2)B+sin^(2)C(d)0

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)
  1. Number of solutions of Re(z^(2))=0 and |Z|=a sqrt(2), where z is a com...

    Text Solution

    |

  2. If (1+ i sqrt(3))^(1999)=a+ib, then

    Text Solution

    |

  3. If z is a complex number satisfying the equation z^6 +z^3 + 1 = 0. If ...

    Text Solution

    |

  4. The value of (1)/(81^(n))-(10)/(81^(n)).""^(2n)C(2)-(10^(3))/(81^(n))....

    Text Solution

    |

  5. The unit digit of (3+sqrt(5))^(2013)+(3-sqrt(5))^(2013) is

    Text Solution

    |

  6. 3""^(n)C(0)+10""^(n)C(1)+28""^(n)C(2)+82""^(n)C(3)+…(n+1) terms =

    Text Solution

    |

  7. A and B are two non-singular square matrices of each 3xx3 such that AB...

    Text Solution

    |

  8. A, B, C are three non-zero matrices such that ABC = O, which of the fo...

    Text Solution

    |

  9. If A is skew symmetric matrix, then I - A is (where I is identity matr...

    Text Solution

    |

  10. If A=[(a,b,c),(b,c,a),(c,a,b)],abc=1,A^(T)A=l, then find the value of ...

    Text Solution

    |

  11. Let M(n)=[m("ij")] denotes a square matrix of order n with entries as ...

    Text Solution

    |

  12. If A+B+C=pi, then the value of determinant |{:(sin^(2)A, cotA,1),(sin^...

    Text Solution

    |

  13. The product of all values of t , for which the system of equations (a-...

    Text Solution

    |

  14. The value of a for which the system of equations , a^(3)x + (a + 1)^(3...

    Text Solution

    |

  15. The number of 'n' digit numbers such that no two consecutive digits ar...

    Text Solution

    |

  16. The number of permutations {a(1),a(2),…,a(10)} of {1,2,3,…,10} satisfy...

    Text Solution

    |

  17. You are given an unlimited supply of each of the digits 1, 2, 3, or 4....

    Text Solution

    |

  18. In a certain test, there are n questions. In this, 2^( n-r ) students ...

    Text Solution

    |

  19. Consider the equation (xy)/(x+y)=2^(3)3^(4)5^(6) then the number of po...

    Text Solution

    |

  20. If vec a , vec ba n d vec c are three non-zero vectors, no two of whi...

    Text Solution

    |