Home
Class 12
MATHS
Let f(x)=|{:(p+x,q+x,r+x),(l+x,m+x,n+x),...

Let `f(x)=|{:(p+x,q+x,r+x),(l+x,m+x,n+x),(a+x,b+x,c+x):}|` then

A

`f''(x)=0`

B

f''(x) is a second degree function of x

C

f'(x) is a linear function of x

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem involving the function \( f(x) = |(p+x, q+x, r+x), (l+x, m+x, n+x), (a+x, b+x, c+x)| \), we need to analyze the determinant formed by the given vectors. Here’s a step-by-step breakdown of the solution: ### Step 1: Understand the Determinant The function \( f(x) \) is defined as the determinant of a 3x3 matrix formed by the vectors: \[ \begin{pmatrix} p+x & q+x & r+x \\ l+x & m+x & n+x \\ a+x & b+x & c+x \end{pmatrix} \] This determinant will depend on the variable \( x \). ### Step 2: Expand the Determinant To find \( f(x) \), we will expand the determinant using the properties of determinants. The determinant of a 3x3 matrix can be calculated using: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] ### Step 3: Calculate the Determinant For our specific matrix, we can calculate the determinant as follows: \[ f(x) = (p+x) \begin{vmatrix} m+x & n+x \\ b+x & c+x \end{vmatrix} - (q+x) \begin{vmatrix} l+x & n+x \\ a+x & c+x \end{vmatrix} + (r+x) \begin{vmatrix} l+x & m+x \\ a+x & b+x \end{vmatrix} \] ### Step 4: Simplify Each Minor Each of the minors can be simplified: 1. \( \begin{vmatrix} m+x & n+x \\ b+x & c+x \end{vmatrix} = (m+x)(c+x) - (n+x)(b+x) \) 2. \( \begin{vmatrix} l+x & n+x \\ a+x & c+x \end{vmatrix} = (l+x)(c+x) - (n+x)(a+x) \) 3. \( \begin{vmatrix} l+x & m+x \\ a+x & b+x \end{vmatrix} = (l+x)(b+x) - (m+x)(a+x) \) ### Step 5: Combine and Collect Terms After substituting back into the determinant expression, we will collect all terms involving \( x \). The highest power of \( x \) will determine the nature of \( f(x) \). ### Step 6: Determine the Degree of \( f(x) \) After simplification, we will find that the highest power of \( x \) in \( f(x) \) is 1. Thus, we can express \( f(x) \) in the form: \[ f(x) = ax + b \] where \( a \) and \( b \) are constants determined by the coefficients of the linear terms. ### Step 7: Find the Derivatives 1. The first derivative \( f'(x) \) will be: \[ f'(x) = a \] which is a constant. 2. The second derivative \( f''(x) \) will be: \[ f''(x) = 0 \] ### Conclusion Since \( f''(x) = 0 \), the function \( f(x) \) is linear in \( x \), confirming that the second derivative is constant.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|(a+x,b+x,c+x),(I+x,m+x,n+x),(p+x,q+x,r+x)|. Show that f prime prime(x)=0 and that f(x)=f(0)+kx where k denotes the sum of all the co-factors of the elements in f(0).

Suppose a,b,c epsilon R and let f(x)=|(0,a-x,b-x),(-a-x,0,c-x),(-b-x,-c-x,0)| Then coefficient of x^(2) in f(x) is

If y=|[f(x),g(x),h(x)],[l,m,n],[a,b,c]| then (dy)/(dx)

let f(x)={2,x in Q),(-2,x!in Q), then

Let Delta=|(a,x,x),(x,b,x),(x,x,c)| and f(x)=(x-a)(x-b)(x-c) Determinant Delta is equal to

Let f(x)=(x)/(1+|x|),x in R, then f is

If p(x) ,q(x) and r(x) and three polynomials of degree 2, then |{:(p(x),q(x),r(x)),(p'(x),q'(x),r'(x)),(p''(x),q''(x),r''(x)):}| is ………….of x .

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. Taken on side bar(AC) of a DeltaABC, a point M such that bar(AM)=(1)/(...

    Text Solution

    |

  2. If position vectors vec(a)(3hati+4hatj).vec(b)(5hatj),vec( c )(4hati-3...

    Text Solution

    |

  3. Let f(x)=|{:(p+x,q+x,r+x),(l+x,m+x,n+x),(a+x,b+x,c+x):}| then

    Text Solution

    |

  4. P is the point vec(i)+x vec(j)+3vec(k). The vector bar(OP) ('O' is the...

    Text Solution

    |

  5. underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

    Text Solution

    |

  6. If lta(n)gtandltb(n)gt be two sequences given by a(n)=(x)^((1)/(2^(n))...

    Text Solution

    |

  7. If a,b,c,d are in H.P., then ab+bc+cd is equal to

    Text Solution

    |

  8. Let A = { 1,3,5,7,9 } and B= { 2,4,6,8 }. An element (a,b) of their ca...

    Text Solution

    |

  9. If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B...

    Text Solution

    |

  10. If x ,y ,z are real and 4x^2+9y^2+16 z^2-6x y-12 y z-8z x=0,t h e nx ,...

    Text Solution

    |

  11. The number of ways in which an examiner can assign 40 marks to 6 quest...

    Text Solution

    |

  12. If a line with direction ratios 2:2:1 intersects the line (x-7)/(3)=(...

    Text Solution

    |

  13. The ratio of lengths of diagonals of the parallelogram constructed on ...

    Text Solution

    |

  14. The number of 4 digit numbers made by using the digits 0, 1, 3, 5, 7, ...

    Text Solution

    |

  15. If a ,1/b ,a n d1/p ,q ,1/r from two arithmetic progressions of the co...

    Text Solution

    |

  16. The maximum area of the triangle formed by the complex coordinates z,...

    Text Solution

    |

  17. If z(1),z(2),z(3) are three complex numbers and A=|{:("arg z"(1),"arg ...

    Text Solution

    |

  18. If in the expansion of 2x+5^(10) , the numerically greatest tem in equ...

    Text Solution

    |

  19. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  20. If one root of the equation z^2-a z+a-1=0i s(1+i),w h e r ea is a comp...

    Text Solution

    |