Home
Class 12
MATHS
underset(r=1)overset(n)sum ( r )/(r^(4)+...

`underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1)` is equal to

A

`(n^(2)+n)/(2(n^(2)+n+1))`

B

`(n^(2)+2n)/(2(n^(2)+n+1))`

C

`(2n^(2)+n)/(2(n^(2)+n+1))`

D

`(n^(2)+n)/((n^(2)+n+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ \sum_{r=1}^{n} \frac{r}{r^4 + r^2 + 1} \] ### Step 1: Simplifying the Denominator First, we can rewrite the denominator \( r^4 + r^2 + 1 \). We can add and subtract \( r^2 \) to facilitate factoring: \[ r^4 + r^2 + 1 = r^4 + 2r^2 + 1 - r^2 = (r^2 + 1)^2 - r^2 \] This can be recognized as a difference of squares: \[ (r^2 + 1)^2 - r^2 = (r^2 + 1 - r)(r^2 + 1 + r) \] Thus, we have: \[ r^4 + r^2 + 1 = (r^2 - r + 1)(r^2 + r + 1) \] ### Step 2: Rewrite the Summation Now we can rewrite the summation: \[ \sum_{r=1}^{n} \frac{r}{(r^2 - r + 1)(r^2 + r + 1)} \] ### Step 3: Partial Fraction Decomposition Next, we can use partial fraction decomposition to express the fraction: \[ \frac{r}{(r^2 - r + 1)(r^2 + r + 1)} = \frac{A}{r^2 - r + 1} + \frac{B}{r^2 + r + 1} \] Multiplying through by the denominator gives: \[ r = A(r^2 + r + 1) + B(r^2 - r + 1) \] ### Step 4: Finding Coefficients Expanding the right-hand side: \[ r = (A + B)r^2 + (A - B)r + (A + B) \] Setting up equations by matching coefficients: 1. \( A + B = 0 \) (coefficient of \( r^2 \)) 2. \( A - B = 1 \) (coefficient of \( r \)) 3. \( A + B = 0 \) (constant term) From the first equation, \( B = -A \). Substituting into the second equation: \[ A - (-A) = 1 \implies 2A = 1 \implies A = \frac{1}{2} \] Thus, \( B = -\frac{1}{2} \). ### Step 5: Rewrite the Summation Now we can rewrite the summation using the coefficients found: \[ \sum_{r=1}^{n} \left( \frac{1/2}{r^2 - r + 1} - \frac{1/2}{r^2 + r + 1} \right) \] This simplifies to: \[ \frac{1}{2} \left( \sum_{r=1}^{n} \frac{1}{r^2 - r + 1} - \sum_{r=1}^{n} \frac{1}{r^2 + r + 1} \right) \] ### Step 6: Evaluating the Summation Now we can evaluate each of these sums. The sums will telescope when we compute them, leading to: \[ \frac{1}{2} \left( \frac{1}{1} - \frac{1}{n^2 + n + 1} \right) \] ### Final Answer Thus, the final result is: \[ \frac{n(n+1)}{2(n^2 + n + 1)} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If k=underset(r=0)overset(n)(sum)(1)/(.^(n)C_(r)) , then underset(r=0)overset(n)(sum)(r)/(.^(n)C_(r)) is equal to

The limit of the series underset(r=1)overset(n)sum (r)/(1+r^(2)+r^(4)) as n approaches infinity, is

sum_(r=1)^(n)=(r )/(r^(4)+r^(2)+1) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

let underset(r=0)overset(2010)(sum)a_(r)x^(r)=(1+x+x^(2)+x^(3)+x^(4)+x^(5))^(402) and underset(r=0)overset(2010)(sum)a_(r)=a, then the value of ((underset(r=0)overset(2010)(sum)r.a_(r))/(underset(r=0)overset(2010)(sum)a_(r))) is equal to____.

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. Let f(x)=|{:(p+x,q+x,r+x),(l+x,m+x,n+x),(a+x,b+x,c+x):}| then

    Text Solution

    |

  2. P is the point vec(i)+x vec(j)+3vec(k). The vector bar(OP) ('O' is the...

    Text Solution

    |

  3. underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

    Text Solution

    |

  4. If lta(n)gtandltb(n)gt be two sequences given by a(n)=(x)^((1)/(2^(n))...

    Text Solution

    |

  5. If a,b,c,d are in H.P., then ab+bc+cd is equal to

    Text Solution

    |

  6. Let A = { 1,3,5,7,9 } and B= { 2,4,6,8 }. An element (a,b) of their ca...

    Text Solution

    |

  7. If A=[i-i-i i]a n dB=[1-1-1 1],t h e nA^8 equals 4B b. 128 B c. -128 B...

    Text Solution

    |

  8. If x ,y ,z are real and 4x^2+9y^2+16 z^2-6x y-12 y z-8z x=0,t h e nx ,...

    Text Solution

    |

  9. The number of ways in which an examiner can assign 40 marks to 6 quest...

    Text Solution

    |

  10. If a line with direction ratios 2:2:1 intersects the line (x-7)/(3)=(...

    Text Solution

    |

  11. The ratio of lengths of diagonals of the parallelogram constructed on ...

    Text Solution

    |

  12. The number of 4 digit numbers made by using the digits 0, 1, 3, 5, 7, ...

    Text Solution

    |

  13. If a ,1/b ,a n d1/p ,q ,1/r from two arithmetic progressions of the co...

    Text Solution

    |

  14. The maximum area of the triangle formed by the complex coordinates z,...

    Text Solution

    |

  15. If z(1),z(2),z(3) are three complex numbers and A=|{:("arg z"(1),"arg ...

    Text Solution

    |

  16. If in the expansion of 2x+5^(10) , the numerically greatest tem in equ...

    Text Solution

    |

  17. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  18. If one root of the equation z^2-a z+a-1=0i s(1+i),w h e r ea is a comp...

    Text Solution

    |

  19. If A=[{:(p,q),(r,s):}] satisfying equation x^(2)-(p+s)x+lambda=0, then

    Text Solution

    |

  20. If z = 1/3 + (1.3)/(3.6) + (1.3.5)/(3.6.9) + .... then

    Text Solution

    |