Home
Class 12
MATHS
If A=[{:(p,q),(r,s):}] satisfying equati...

If `A=[{:(p,q),(r,s):}]` satisfying equation `x^(2)-(p+s)x+lambda=0`, then

A

`lambda=ps`

B

`lambda=qr`

C

`lambda=ps-qr`

D

`lambda=qr-ps`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given matrix \( A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \) and the quadratic equation \( x^2 - (p+s)x + \lambda = 0 \). We will find the relationship between \( \lambda \) and the elements of the matrix. ### Step-by-step Solution: 1. **Understanding the Matrix**: We have a matrix \( A \) defined as: \[ A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \] 2. **Calculating \( A^2 \)**: We need to calculate \( A^2 \) using the matrix multiplication rule (Row-Column Rule): \[ A^2 = A \cdot A = \begin{pmatrix} p & q \\ r & s \end{pmatrix} \cdot \begin{pmatrix} p & q \\ r & s \end{pmatrix} \] Performing the multiplication: \[ A^2 = \begin{pmatrix} p^2 + qr & pq + qs \\ rp + sr & rq + s^2 \end{pmatrix} \] 3. **Setting Up the Equation**: We know that \( A^2 \) is related to the identity matrix \( I \) and \( \lambda \): \[ A^2 - (p+s)A + \lambda I = 0 \] This implies: \[ A^2 = (p+s)A - \lambda I \] 4. **Substituting \( A \) and \( I \)**: The identity matrix \( I \) in this case is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] Thus, we can express \( \lambda I \) as: \[ \lambda I = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \] 5. **Equating the Matrices**: We can equate the components of the matrices: \[ \begin{pmatrix} p^2 + qr & pq + qs \\ rp + sr & rq + s^2 \end{pmatrix} = \begin{pmatrix} (p+s)p - \lambda & (p+s)q \\ (p+s)r & (p+s)s - \lambda \end{pmatrix} \] 6. **Finding \( \lambda \)**: By comparing the elements of the matrices, we can derive the equations: - From the first element: \[ p^2 + qr = (p+s)p - \lambda \] - From the second element: \[ pq + qs = (p+s)q \] - From the third element: \[ rp + sr = (p+s)r \] - From the fourth element: \[ rq + s^2 = (p+s)s - \lambda \] 7. **Solving for \( \lambda \)**: From the first and fourth equations, we can isolate \( \lambda \): \[ \lambda = p^2 + qr - (p+s)p \] \[ \lambda = (p+s)s - (rq + s^2) \] Simplifying these gives us: \[ \lambda = ps - qr \] ### Final Result: Thus, the relationship between \( \lambda \) and the elements of the matrix is: \[ \lambda = ps - qr \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If X=[{:(3,-4),(1,-1):}],B=[{:(5,2),(-2,1):}]and A=[{:(p,q),(r,s):}] satisfy the equation AX = B, then the matrix A is equal to

If p,q varepsilon N satisfy the equation x^(sqrt(x)=(sqrt(x))^(x)) then p&q are

If p, q, r are the roots of the equation x^3 -3x^2 + 3x = 0 , then the value of |[qr-p^2, r^2 , q^2],[r^2,pr-q^2,p^2],[q^2,p^2,pq-r^2]|=

The roots of the equation (q-r)x^(2)+(r-p)x+(p-q)=0

If p,q,r and s are real numbers such that pr=2(q+s), then show that at least one of the equations x^(2)+px+q=0 and x^(2)+rx+s=0 has real roots.

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. Elements of a matrix A or orddr 10xx10 are defined as a(i j)=w^(i+j) (...

    Text Solution

    |

  2. If one root of the equation z^2-a z+a-1=0i s(1+i),w h e r ea is a comp...

    Text Solution

    |

  3. If A=[{:(p,q),(r,s):}] satisfying equation x^(2)-(p+s)x+lambda=0, then

    Text Solution

    |

  4. If z = 1/3 + (1.3)/(3.6) + (1.3.5)/(3.6.9) + .... then

    Text Solution

    |

  5. Consider the set of equation x+y+xy=35,y+z+yz=8,z+x+zx=3. If z(1),z(2)...

    Text Solution

    |

  6. Let z(1),z(2) be two distinct complex numbers with non-zero real and i...

    Text Solution

    |

  7. The coefficient of a^8b^4c^9d^9 in (a b c+a b d+a c d d+b c d)^(10) is...

    Text Solution

    |

  8. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  9. If four whole numbers taken art random are multiplied together, the...

    Text Solution

    |

  10. Let vec(x),vec(y) be two non-collinear vectors such that. (l+2m)vec(...

    Text Solution

    |

  11. Let a, p, q, r, s in R-{0}. If 3a^(2)+2((1)/(p)-(1)/(s))a+(1)/(p^(2))+...

    Text Solution

    |

  12. Sum of all divisors of 5400 whose unit digit is 0 is

    Text Solution

    |

  13. Sequence {tn} of positive terms is a G.P If t6 2, 5, t14 form another ...

    Text Solution

    |

  14. If A("mxn") is a matrix and I and I' are unit matrices such that I'AI ...

    Text Solution

    |

  15. Let A be a square matrix of order 3 such that transpose of inverse of ...

    Text Solution

    |

  16. If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^...

    Text Solution

    |

  17. If "log"(1//sqrt(2))|z+1|lt log(1//sqrt(2))|z-1|,|z-2i|lt |z+2i| and ...

    Text Solution

    |

  18. Let z in C and if A={z:"arg"(z)=pi/4}and B={z:"arg"(z-3-3i)=(2pi)/3}. ...

    Text Solution

    |

  19. The term that is independent of x, in the expression ((3)/(2)x^(2)-(1)...

    Text Solution

    |

  20. The value of a for which the equation x^3 + ax + 1 = 0 and x^4+ ax + ...

    Text Solution

    |