Home
Class 12
MATHS
Let vec(x),vec(y) be two non-collinear v...

Let `vec(x),vec(y)` be two non-collinear vectors such that.
`(l+2m)vec(x)+(l+2n)vec(y)=0` and `A(vec(a)),B(vec(b)),C(vec( c ))` are three points satisfying the relation `l vec(a)+m vec(b)+n vec( c )=0`. For any point P in space `(bar(PA)xx bar(PB))xx[(bar(PB)xx bar(PC))xx(bar(PC)xx bar(PA))]` is equal to

A

`[bar(PA)bar(PB)bar(PC)]bar(PA)+bar(PB)`

B

`bar(PA)xx bar(PB)`

C

`bar(PB)xx bar(PC)`

D

`bar(0)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equations and the relationships between the vectors involved. ### Step-by-Step Solution: 1. **Understanding the Given Equations**: We are given two non-collinear vectors \( \vec{x} \) and \( \vec{y} \) such that: \[ (l + 2m)\vec{x} + (l + 2n)\vec{y} = 0 \] This implies that both coefficients must be zero for the equation to hold (since \( \vec{x} \) and \( \vec{y} \) are non-collinear). Thus, we have: \[ l + 2m = 0 \quad \text{(1)} \] \[ l + 2n = 0 \quad \text{(2)} \] 2. **Solving for \( m \) and \( n \)**: From equation (1), we can express \( m \) in terms of \( l \): \[ m = -\frac{l}{2} \] From equation (2), we can express \( n \) in terms of \( l \): \[ n = -\frac{l}{2} \] 3. **Using the Position Vectors**: We are also given the relation: \[ l\vec{a} + m\vec{b} + n\vec{c} = 0 \] Substituting the values of \( m \) and \( n \): \[ l\vec{a} - \frac{l}{2}\vec{b} - \frac{l}{2}\vec{c} = 0 \] Factoring out \( l \) (assuming \( l \neq 0 \)): \[ \vec{a} - \frac{1}{2}\vec{b} - \frac{1}{2}\vec{c} = 0 \] Rearranging gives: \[ 2\vec{a} = \vec{b} + \vec{c} \] This shows that \( \vec{a}, \vec{b}, \vec{c} \) are collinear. 4. **Finding the Vector Expression**: We need to evaluate: \[ (\bar{PA} \times \bar{PB}) \times [(\bar{PB} \times \bar{PC}) \times (\bar{PC} \times \bar{PA})] \] To simplify the calculations, we can set the position vector of point \( P \) as \( \vec{0} \). 5. **Substituting \( P \) as the Origin**: Let \( \bar{PA} = \vec{a} \), \( \bar{PB} = \vec{b} \), and \( \bar{PC} = \vec{c} \). Therefore, we need to compute: \[ (\vec{a} \times \vec{b}) \times [(\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})] \] 6. **Using the Vector Triple Product Identity**: Using the identity \( \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w})\vec{v} - (\vec{u} \cdot \vec{v})\vec{w} \): - Let \( \vec{u} = \vec{a} \), \( \vec{v} = \vec{b} \), \( \vec{w} = \vec{c} \). - First calculate \( (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) \). 7. **Final Calculation**: After performing the calculations, we find that the expression evaluates to zero because \( \vec{a}, \vec{b}, \vec{c} \) are collinear, leading to: \[ \text{Result} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If vec(b) and vec(c) are two non-collinear vectors such that vec(a) || (vec(b) xx vec(c)) , then (vec(a) xx vec(b)).(vec(a) xx vec(c)) is equal to

If vec b and vec c are two non-collinear vectors such that vec a*(vec b+vec c)=4 and vec a xx(vec b xxvec c)=(x^(2)-2x+6)vec b+(sin y)vec c then the point (x,y) lies on

If vec(a) and vec(b) are two unit vectors, then the vector (vec(a) + vec(b)) xx (vec(a) xx vec(b)) is parallel to

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=0 , then prove that : vec(a)xx vec(b)=vec(b)xx vec(c )=vec(c )xx vec(a) and hence, show that [vec(a)vec(b)vec(c )]=0 .

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

Prove that : {(vec(b)-vec(c ))xx(vec(c )-vec(a))}.(vec(a)-vec(b))=0 .

If vec(a),vec(b),vec(c) are three non-coplanar unit vector such that [vec(a),vec(b),vec(c)]=3 then [ vec(a) times vec(b), vec(b) times vec (c),vec(c) times vec(a) ] equals

If vec(A)+vec(B)+vec(C )=0 then vec(A)xx vec(B) is

If [vec(a) vec(b) vec(c)]=4 then [vec(a)times vec(b) vec(b)times vec(c)vec(c) times vec(a)] =

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. Let aa n db be the roots of the equation x^2-10 c x-11 d=0 and those o...

    Text Solution

    |

  2. If four whole numbers taken art random are multiplied together, the...

    Text Solution

    |

  3. Let vec(x),vec(y) be two non-collinear vectors such that. (l+2m)vec(...

    Text Solution

    |

  4. Let a, p, q, r, s in R-{0}. If 3a^(2)+2((1)/(p)-(1)/(s))a+(1)/(p^(2))+...

    Text Solution

    |

  5. Sum of all divisors of 5400 whose unit digit is 0 is

    Text Solution

    |

  6. Sequence {tn} of positive terms is a G.P If t6 2, 5, t14 form another ...

    Text Solution

    |

  7. If A("mxn") is a matrix and I and I' are unit matrices such that I'AI ...

    Text Solution

    |

  8. Let A be a square matrix of order 3 such that transpose of inverse of ...

    Text Solution

    |

  9. If |{:(bc-a^(2),ac-b^(2),ab-c^(2)),(ac-b^(2),ab-c^(2),bc-a^(2)),(ab-c^...

    Text Solution

    |

  10. If "log"(1//sqrt(2))|z+1|lt log(1//sqrt(2))|z-1|,|z-2i|lt |z+2i| and ...

    Text Solution

    |

  11. Let z in C and if A={z:"arg"(z)=pi/4}and B={z:"arg"(z-3-3i)=(2pi)/3}. ...

    Text Solution

    |

  12. The term that is independent of x, in the expression ((3)/(2)x^(2)-(1)...

    Text Solution

    |

  13. The value of a for which the equation x^3 + ax + 1 = 0 and x^4+ ax + ...

    Text Solution

    |

  14. Let a(n)=(827^(n))/(n!) for n in N , then a(n) is greatest when

    Text Solution

    |

  15. If x^(2)+xy+xz=18,y^(2)+yz+yx+12=0 and z^(2)+zx+zy=30, then (x+y+z)=

    Text Solution

    |

  16. Consider the equation of the form x^(2)+px+q=0, then number of such eq...

    Text Solution

    |

  17. The sum of the least and greates in absolute value of z which satisfie...

    Text Solution

    |

  18. The power of 7 contained in ""^(1000)C(500) must be

    Text Solution

    |

  19. If H(1),H(2)…H(4) be (n-1) harmonic means between a and b, then (H(1)+...

    Text Solution

    |

  20. If a^2+b^2+c^2=1 then ab+bc+ca lies in the interval

    Text Solution

    |