Home
Class 12
MATHS
If a(1),a(2),a(3)… are in G.P. then the ...

If `a_(1),a_(2),a_(3)…` are in G.P. then the value of
`|{:(log a_(n),loga_(n+1),log a_(n+2)),(log a_(n+3),log a_(n+4),log a_(n+5)),(log a_(n+6),log a_(n+7),log a_(n+8)):}|` is

A

`log a_(1)a_(3)-2log a_(2)`

B

`-1`

C

0

D

`log(a_(n)a_(n+8))-2loga_(n+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant: \[ D = \begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix} \] Given that \(a_1, a_2, a_3, \ldots\) are in a geometric progression (G.P.), we can express the terms as follows: \[ a_n = ar^{n-1}, \quad a_{n+1} = ar^n, \quad a_{n+2} = ar^{n+1}, \quad a_{n+3} = ar^{n+2}, \quad a_{n+4} = ar^{n+3}, \quad a_{n+5} = ar^{n+4}, \quad a_{n+6} = ar^{n+5}, \quad a_{n+7} = ar^{n+6}, \quad a_{n+8} = ar^{n+7} \] Taking logarithms, we have: \[ \log a_n = \log a + (n-1) \log r, \quad \log a_{n+1} = \log a + n \log r, \quad \log a_{n+2} = \log a + (n+1) \log r \] Continuing this way, we can express all logarithmic terms in the determinant: \[ \log a_{n+3} = \log a + (n+2) \log r, \quad \log a_{n+4} = \log a + (n+3) \log r, \quad \log a_{n+5} = \log a + (n+4) \log r \] \[ \log a_{n+6} = \log a + (n+5) \log r, \quad \log a_{n+7} = \log a + (n+6) \log r, \quad \log a_{n+8} = \log a + (n+7) \log r \] Substituting these into the determinant, we get: \[ D = \begin{vmatrix} \log a + (n-1) \log r & \log a + n \log r & \log a + (n+1) \log r \\ \log a + (n+2) \log r & \log a + (n+3) \log r & \log a + (n+4) \log r \\ \log a + (n+5) \log r & \log a + (n+6) \log r & \log a + (n+7) \log r \end{vmatrix} \] Now, we can simplify the determinant by performing column operations. We will subtract the first column from the second and third columns: 1. **Column 2**: \(C_2 \to C_2 - C_1\) 2. **Column 3**: \(C_3 \to C_3 - C_1\) This gives us: \[ D = \begin{vmatrix} \log a + (n-1) \log r & (n \log r - (n-1) \log r) & ((n+1) \log r - (n-1) \log r) \\ \log a + (n+2) \log r & ((n+3) \log r - (n+2) \log r) & ((n+4) \log r - (n+2) \log r) \\ \log a + (n+5) \log r & ((n+6) \log r - (n+5) \log r) & ((n+7) \log r - (n+5) \log r) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} \log a + (n-1) \log r & \log r & 2 \log r \\ \log a + (n+2) \log r & \log r & 2 \log r \\ \log a + (n+5) \log r & \log r & 2 \log r \end{vmatrix} \] Now, notice that the second and third columns are proportional, which means that the determinant is equal to zero. Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),...... are in G.P.then the value of determinant det[[log(a_(n)),log(a_(n+1)),log(a_(n+2))log(a_(n+3)),log(a_(n+4)),log(a_(n+5))log(a_(n+6)),log(a_(n+7)),log(a_(n+8))]] equals

If a_(1),a_(2),a_(3),……….a_(n) ………… are in G.P and a_(i) gt 0 then the value of the determinant |(loga_(n),log a_(n+1),loga_(n+2)),(loga_(n+1),loga_(n+2),loga_(n+3)),(loga_(n+2),loga_(n+3),loga_(n+4))| is

If a_1,a_2,a_3,….,a_n are in G.P. are in a_i > 0 for each I, then the determinant Delta=|{:(loga_n,log a_(n+2),log a_(n+4)),(log a_(n+6),log a_(n+8), log a_(n+10)),(log a_(n+12), log a_(n+14), loga_(n+16)):}|

If a_(1),a_(2),a_(3),.... are in G.P. with common ratio as r^(2) then log a_(1),log a_(2),log a_(3),.... will be in

If a_(1), a_(2), a_(3), …., a_(9) are in GP, then what is the value of the following determinant? |(ln a_(1), ln a_(2), ln a_(3)),(lna_(4), lna_(5), ln a_(6)), (ln a_(7), ln a_(8), ln a_(9))|

If a_(1),a_(2),...a_(n) are in H.P then the expression a_(1)a_(2)+a_(2)a_(3)+...+a_(n-1)a_(n) is equal to

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. If a^2+b^2+c^2=1 then ab+bc+ca lies in the interval

    Text Solution

    |

  2. If Sn=1/1^3 +(1+2)/(1^3+2^3)+...+(1+2+3+...+n)/(1^3+2^3+3^3+...+n^3) T...

    Text Solution

    |

  3. If a(1),a(2),a(3)… are in G.P. then the value of |{:(log a(n),loga(n+...

    Text Solution

    |

  4. If alphaa n dbeta are the roots of x^2-a(x-1)+b=0 then find the value ...

    Text Solution

    |

  5. The last term in the binomial expansion of (2^(1/3) -1/sqrt(2))^n is (...

    Text Solution

    |

  6. If alpha is a root of z^5 +z^3 +2+3=0, then

    Text Solution

    |

  7. Let S1, S2, be squares such that for each ngeq1, the length of a side...

    Text Solution

    |

  8. The number of ways in which a committee of 3 women and 4 men be chosen...

    Text Solution

    |

  9. Forty team play a tournament. Each team plays every other team just ...

    Text Solution

    |

  10. The largest, two digit prime factor of ""^(200)C(100) is

    Text Solution

    |

  11. The number of ordered pairs of positive integers (m, n) satisfying m l...

    Text Solution

    |

  12. The minimum value of (x^4+y^4+z^2)/(x y z) for positive real numbers x...

    Text Solution

    |

  13. z is a complex number such that z+1/z=2cos 3^0 ,then the value of z^(2...

    Text Solution

    |

  14. Let the unit vectors vec a, vec b, vec c be the position vectors of t...

    Text Solution

    |

  15. If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}...

    Text Solution

    |

  16. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  17. If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(...

    Text Solution

    |

  18. The distance of point of intersection of lines (x-4)/1=(x+3)/-4=(z-1)...

    Text Solution

    |

  19. Let A, B, C be points with position vectors r(1)=2hati-hatj+hatk, r(2)...

    Text Solution

    |

  20. The real numbers x, y satisfy x^(3)-3x^(2)+5x-17=0 and y^(3)-3y^(2)+5y...

    Text Solution

    |