Home
Class 12
MATHS
If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)...

If `A=[{:(1,1),(0,1):}]` and `B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}]`, then `("BB"^(T)A)^(5)` is equal to

A

`[{:(2+sqrt(3),1),(-1,2-sqrt(3)):}]`

B

`(1)/(2)[{:(1,5),(0,1):}]`

C

`[{:(1,1),(0,1):}]`

D

`[{:(5,1),(0,1):}]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \((BB^T A)^5\), where \(A\) and \(B\) are given matrices. Let's break this down step by step. ### Step 1: Define the Matrices The matrices are defined as follows: \[ A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] \[ B = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 2: Compute \(B^T\) The transpose of matrix \(B\) is obtained by swapping rows and columns: \[ B^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Step 3: Compute \(BB^T\) Now, we will multiply \(B\) by \(B^T\): \[ BB^T = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] Calculating the elements: 1. First row, first column: \[ \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4} + \frac{1}{4} = 1 \] 2. First row, second column: \[ \frac{\sqrt{3}}{2} \cdot -\frac{1}{2} + \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \] 3. Second row, first column: \[ -\frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = -\frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = 0 \] 4. Second row, second column: \[ -\frac{1}{2} \cdot -\frac{1}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{1}{4} + \frac{3}{4} = 1 \] Thus, we have: \[ BB^T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] ### Step 4: Compute \(BB^T A\) Now we multiply \(BB^T\) by \(A\): \[ BB^T A = I A = A \] So, \[ BB^T A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Compute \((BB^T A)^5\) Finally, we need to compute \((A)^5\): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \] \[ A^3 = A^2 \cdot A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \] \[ A^4 = A^3 \cdot A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \] \[ A^5 = A^4 \cdot A = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix} \] Thus, \((BB^T A)^5 = A^5 = \begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}\). ### Final Answer \[ \boxed{\begin{pmatrix} 1 & 5 \\ 0 & 1 \end{pmatrix}} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If A= (1)/(2) ((-1,-sqrt(3)),(sqrt(3),-1)) then A^(-1)- A^(2) is equal to a

If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) is equal to

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then det (x) is equal to

Value of (-1+sqrt(-3))^(2)+(-1-sqrt(-3))^(2) is equal to

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then a+(1)/(a) is equal to

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. z is a complex number such that z+1/z=2cos 3^0 ,then the value of z^(2...

    Text Solution

    |

  2. Let the unit vectors vec a, vec b, vec c be the position vectors of t...

    Text Solution

    |

  3. If A=[{:(1,1),(0,1):}] and B=[{:(sqrt(3)//2,1//2),(-1//2,sqrt(3)//2):}...

    Text Solution

    |

  4. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  5. If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(...

    Text Solution

    |

  6. The distance of point of intersection of lines (x-4)/1=(x+3)/-4=(z-1)...

    Text Solution

    |

  7. Let A, B, C be points with position vectors r(1)=2hati-hatj+hatk, r(2)...

    Text Solution

    |

  8. The real numbers x, y satisfy x^(3)-3x^(2)+5x-17=0 and y^(3)-3y^(2)+5y...

    Text Solution

    |

  9. x, y, z in R such that x^(2)+y^(2)+z^(2)=1 and alpha=x^(2)+2y^(2)+3z^(...

    Text Solution

    |

  10. Let A, B, C be three events such that P (exactly one of A or (B) = P (...

    Text Solution

    |

  11. If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(...

    Text Solution

    |

  12. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  13. A unit tengent vector at t = 2 on the curve x=t^(2)+2, y=4t^(3)-5,z=2t...

    Text Solution

    |

  14. If p is a prime and both roots of x^(2)-px-444p=0 are integers, then p...

    Text Solution

    |

  15. If 12 divides the seven digit number ab313ab, then the smallest value ...

    Text Solution

    |

  16. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  17. If vec b is a vector whose initial point divides thejoin of 5 hat ...

    Text Solution

    |

  18. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  19. If vec a , vec b ,a n d vec c are there mutually perpendicular uni...

    Text Solution

    |

  20. If T( r )=( r )/(r^(4)+4) and S(n)=underset(r=1)overset(n)sum t( r ). ...

    Text Solution

    |