Home
Class 12
MATHS
Let A, B, C be points with position vect...

Let A, B, C be points with position vectors `r_(1)=2hati-hatj+hatk, r_(2)=hati+2hatj+3hatk` and `r_(3)=3hati+hatj+2hatk` relative to the origin 'O'. The shortest distance between point B and plane OAC is

A

10

B

5

C

`sqrt(5//7)`

D

`2sqrt(5//7)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between point B and the plane OAC, we will follow these steps: ### Step 1: Identify the position vectors Given the position vectors: - \( \mathbf{r_1} = 2\hat{i} - \hat{j} + \hat{k} \) (Point A) - \( \mathbf{r_2} = \hat{i} + 2\hat{j} + 3\hat{k} \) (Point B) - \( \mathbf{r_3} = 3\hat{i} + \hat{j} + 2\hat{k} \) (Point C) ### Step 2: Find the vectors OA and OC The vectors from the origin O to points A and C are: - \( \mathbf{OA} = \mathbf{r_1} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \mathbf{OC} = \mathbf{r_3} = 3\hat{i} + \hat{j} + 2\hat{k} \) ### Step 3: Calculate the cross product \( \mathbf{OA} \times \mathbf{OC} \) To find the normal vector to the plane OAC, we calculate the cross product: \[ \mathbf{OA} \times \mathbf{OC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 3 & 1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left((-1) \cdot 2 - 1 \cdot 1\right) - \hat{j} \left(2 \cdot 2 - 1 \cdot 3\right) + \hat{k} \left(2 \cdot 1 - (-1) \cdot 3\right) \] \[ = \hat{i} (-2 - 1) - \hat{j} (4 - 3) + \hat{k} (2 + 3) \] \[ = -3\hat{i} - 1\hat{j} + 5\hat{k} \] Thus, \( \mathbf{n} = -3\hat{i} - \hat{j} + 5\hat{k} \). ### Step 4: Find the magnitude of the normal vector The magnitude of the normal vector \( \mathbf{n} \) is: \[ |\mathbf{n}| = \sqrt{(-3)^2 + (-1)^2 + 5^2} = \sqrt{9 + 1 + 25} = \sqrt{35} \] ### Step 5: Calculate the distance from point B to the plane OAC The formula for the distance \( d \) from a point \( \mathbf{P} \) to a plane defined by the normal vector \( \mathbf{n} \) and a point \( \mathbf{A} \) on the plane is: \[ d = \frac{|\mathbf{n} \cdot (\mathbf{P} - \mathbf{A})|}{|\mathbf{n}|} \] Here, \( \mathbf{P} = \mathbf{r_2} = \hat{i} + 2\hat{j} + 3\hat{k} \) and \( \mathbf{A} = \mathbf{r_1} = 2\hat{i} - \hat{j} + \hat{k} \). Calculating \( \mathbf{P} - \mathbf{A} \): \[ \mathbf{P} - \mathbf{A} = (\hat{i} + 2\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) = -\hat{i} + 3\hat{j} + 2\hat{k} \] Now calculate the dot product \( \mathbf{n} \cdot (\mathbf{P} - \mathbf{A}) \): \[ \mathbf{n} \cdot (\mathbf{P} - \mathbf{A}) = (-3\hat{i} - \hat{j} + 5\hat{k}) \cdot (-\hat{i} + 3\hat{j} + 2\hat{k}) \] \[ = (-3)(-1) + (-1)(3) + (5)(2) = 3 - 3 + 10 = 10 \] ### Step 6: Substitute into the distance formula Now substituting into the distance formula: \[ d = \frac{|10|}{\sqrt{35}} = \frac{10}{\sqrt{35}} = \frac{10\sqrt{35}}{35} = \frac{2\sqrt{5}}{7} \] ### Final Answer The shortest distance between point B and plane OAC is: \[ \frac{2\sqrt{5}}{7} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Let A,B,C be points with position vectors r_1=2hati-hatj+hatk,r_2=hati+2hatj+3hatk and r_3=3hati+hatj+2hatk relative to the origin O. Find the shortest distance between point B and plane OAC.

Three point A, B and C with position vectors a_(1)=3hati-2hatj-hatk, a_(2)=hati+3hatj+4hatk and a_(3)=2hati+hatj-2hatk relative to an origin O. The distance of A from the plane OBC is (magnitude)

Let A,B,C be points with position vectors 2hati-hatj+hatk,hati+2hatj+hatkand 3hati+hatj+2hatk respectively. Find the shortest distance between point B and plane OAC.

The points with position vectors 5hati + 5hatk, -4hati + 3hatj - hatk and 2hati +hatj + 3hatk

The point having position vectors 2hati+3hatj+4hatk,3hati+4hatj+2hatk and 4hati+2hatj+3hatk are the vertices of

Show that the points A, B and C with position vectors -2hati+3hatj+5hatk, hati+2hatj+3hatk and 7hati-hatk respectively are collinear

If a=3hati-2hatj+hatk,b=2hati-4hatj-3hatk and c=-hati+2hatj+2hatk , then a+b+c is

The points with position vectors alpha hati+hatj+hatk, hati-hatj-hatk, hati+2hatj-hatk, hati+hatj+betahatk are coplanar if

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  2. If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(...

    Text Solution

    |

  3. The distance of point of intersection of lines (x-4)/1=(x+3)/-4=(z-1)...

    Text Solution

    |

  4. Let A, B, C be points with position vectors r(1)=2hati-hatj+hatk, r(2)...

    Text Solution

    |

  5. The real numbers x, y satisfy x^(3)-3x^(2)+5x-17=0 and y^(3)-3y^(2)+5y...

    Text Solution

    |

  6. x, y, z in R such that x^(2)+y^(2)+z^(2)=1 and alpha=x^(2)+2y^(2)+3z^(...

    Text Solution

    |

  7. Let A, B, C be three events such that P (exactly one of A or (B) = P (...

    Text Solution

    |

  8. If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(...

    Text Solution

    |

  9. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  10. A unit tengent vector at t = 2 on the curve x=t^(2)+2, y=4t^(3)-5,z=2t...

    Text Solution

    |

  11. If p is a prime and both roots of x^(2)-px-444p=0 are integers, then p...

    Text Solution

    |

  12. If 12 divides the seven digit number ab313ab, then the smallest value ...

    Text Solution

    |

  13. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  14. If vec b is a vector whose initial point divides thejoin of 5 hat ...

    Text Solution

    |

  15. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  16. If vec a , vec b ,a n d vec c are there mutually perpendicular uni...

    Text Solution

    |

  17. If T( r )=( r )/(r^(4)+4) and S(n)=underset(r=1)overset(n)sum t( r ). ...

    Text Solution

    |

  18. One of the roots of the equation 2000x^6 + 100x^5 + 10x^3 + x-2 =0 is ...

    Text Solution

    |

  19. If omega is the 2014^("th") root of unity and z(1) and z(2) be any two...

    Text Solution

    |

  20. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |