Home
Class 12
MATHS
If T( r )=( r )/(r^(4)+4) and S(n)=under...

If `T_( r )=( r )/(r^(4)+4)` and `S_(n)=underset(r=1)overset(n)sum t_( r )`. Then the value of `37S_(5)-(7)/(26)` is equal to

A

13

B

`25//26`

C

`1//2`

D

`7//36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 37S_5 - \frac{7}{26} \), where \( S_n = \sum_{r=1}^{n} T_r \) and \( T_r = \frac{r}{r^4 + 4} \). ### Step 1: Simplify \( T_r \) We start with the expression for \( T_r \): \[ T_r = \frac{r}{r^4 + 4} \] We can rewrite \( r^4 + 4 \) as \( r^4 + 4r^2 + 4 - 4r^2 \): \[ T_r = \frac{r}{(r^2 + 2)^2 - (2r)^2} \] This can be factored using the difference of squares: \[ T_r = \frac{r}{(r^2 + 2 - 2r)(r^2 + 2 + 2r)} = \frac{r}{(r^2 - 2r + 2)(r^2 + 2r + 2)} \] ### Step 2: Partial Fraction Decomposition We can express \( T_r \) in terms of partial fractions: \[ T_r = \frac{A}{r^2 - 2r + 2} + \frac{B}{r^2 + 2r + 2} \] Multiplying through by the denominator \( (r^2 - 2r + 2)(r^2 + 2r + 2) \) gives: \[ r = A(r^2 + 2r + 2) + B(r^2 - 2r + 2) \] Expanding and collecting like terms, we can find \( A \) and \( B \). ### Step 3: Solve for \( A \) and \( B \) By substituting suitable values for \( r \) or by equating coefficients, we can find: 1. Set \( r = 0 \) to find \( A + B = 0 \). 2. Set \( r = 1 \) to find \( A(1 + 2 + 2) + B(1 - 2 + 2) = 1 \). 3. Solve the resulting equations to find \( A \) and \( B \). After solving, we find: \[ A = \frac{1}{4}, \quad B = -\frac{1}{4} \] Thus, \[ T_r = \frac{1/4}{r^2 - 2r + 2} - \frac{1/4}{r^2 + 2r + 2} \] ### Step 4: Calculate \( S_5 \) Now we can calculate \( S_5 \): \[ S_5 = \sum_{r=1}^{5} T_r = \frac{1}{4} \sum_{r=1}^{5} \left( \frac{1}{r^2 - 2r + 2} - \frac{1}{r^2 + 2r + 2} \right) \] Calculating each term: - For \( r = 1 \): \( T_1 = \frac{1}{4} \left( \frac{1}{1} - \frac{1}{5} \right) = \frac{1}{4} \cdot \frac{4}{5} = \frac{1}{5} \) - For \( r = 2 \): \( T_2 = \frac{1}{4} \left( \frac{1}{2} - \frac{1}{6} \right) = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12} \) - For \( r = 3 \): \( T_3 = \frac{1}{4} \left( \frac{1}{4} - \frac{1}{8} \right) = \frac{1}{4} \cdot \frac{1}{8} = \frac{1}{32} \) - For \( r = 4 \): \( T_4 = \frac{1}{4} \left( \frac{1}{6} - \frac{1}{10} \right) = \frac{1}{4} \cdot \frac{1}{15} = \frac{1}{60} \) - For \( r = 5 \): \( T_5 = \frac{1}{4} \left( \frac{1}{8} - \frac{1}{12} \right) = \frac{1}{4} \cdot \frac{1}{24} = \frac{1}{96} \) Now summing these values: \[ S_5 = \frac{1}{5} + \frac{1}{12} + \frac{1}{32} + \frac{1}{60} + \frac{1}{96} \] ### Step 5: Calculate \( 37S_5 - \frac{7}{26} \) After calculating \( S_5 \), we multiply by 37 and subtract \( \frac{7}{26} \): \[ 37S_5 - \frac{7}{26} \] Finding a common denominator and simplifying will yield the final answer.
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT (SECTION (I) : MCQ (SINGLE CORRECT)|120 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

underset(r=1)overset(n)sum ( r )/(r^(4)+r^(2)+1) is equal to

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If sum_(r=1)^(n)T_(r)=(n(n+1)(n+2))/(6), then the value of sum_(r=1)^(oo)((1)/(T_(r))) is equal to

If T_(r)=(1)/(log_(2^r)4) (where r in N ), then the value of sum_(r=1)^(4) T_(r) is :

If t_(r)=(r)/(4r^(4)+1), then sum_(r=1)^(oo)t_(r) is equal to

FIITJEE-MATHEMATICS TIPS-ASSIGNMENT -OBJECTIVE
  1. The quadratic x^2+a x=b+1=0 has roots which are positive integers, the...

    Text Solution

    |

  2. If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line then a^(...

    Text Solution

    |

  3. The distance of point of intersection of lines (x-4)/1=(x+3)/-4=(z-1)...

    Text Solution

    |

  4. Let A, B, C be points with position vectors r(1)=2hati-hatj+hatk, r(2)...

    Text Solution

    |

  5. The real numbers x, y satisfy x^(3)-3x^(2)+5x-17=0 and y^(3)-3y^(2)+5y...

    Text Solution

    |

  6. x, y, z in R such that x^(2)+y^(2)+z^(2)=1 and alpha=x^(2)+2y^(2)+3z^(...

    Text Solution

    |

  7. Let A, B, C be three events such that P (exactly one of A or (B) = P (...

    Text Solution

    |

  8. If px^(4)+qx^(3)+rx^(2)+sx+t=|{:(x^(2)+3x,x-1,x+3),(x^(2)+1,2-x,x-3),(...

    Text Solution

    |

  9. In a 4xx4 matrix the sum of each row, column and both the main diagona...

    Text Solution

    |

  10. A unit tengent vector at t = 2 on the curve x=t^(2)+2, y=4t^(3)-5,z=2t...

    Text Solution

    |

  11. If p is a prime and both roots of x^(2)-px-444p=0 are integers, then p...

    Text Solution

    |

  12. If 12 divides the seven digit number ab313ab, then the smallest value ...

    Text Solution

    |

  13. If z is a complex number lying in the fourth quadrant of Argand plane ...

    Text Solution

    |

  14. If vec b is a vector whose initial point divides thejoin of 5 hat ...

    Text Solution

    |

  15. Position vector hat k is rotated about the origin by angle 135^0 i...

    Text Solution

    |

  16. If vec a , vec b ,a n d vec c are there mutually perpendicular uni...

    Text Solution

    |

  17. If T( r )=( r )/(r^(4)+4) and S(n)=underset(r=1)overset(n)sum t( r ). ...

    Text Solution

    |

  18. One of the roots of the equation 2000x^6 + 100x^5 + 10x^3 + x-2 =0 is ...

    Text Solution

    |

  19. If omega is the 2014^("th") root of unity and z(1) and z(2) be any two...

    Text Solution

    |

  20. If Delta(x)=|((e^x,sin2x,tanx^2)),((In(1+x),cosx,sinx)),((cosx^2,e^x-1...

    Text Solution

    |