Home
Class 12
MATHS
Statement 1: If point (alpha, beta, gamm...

Statement 1: If point `(alpha, beta, gamma)` lies above the plane `(a^(2)+1)x+(b+1)y+(c^(2)+c+1)z+d=0`, then `(a^(2)+1)alpha+(b+1)beta+(c^(2)+c+1)gamma+d gt 0`.
because
Statement 2: If the point `(alpha, beta, gamma)` lies above the plane `ax+by+cz+d=0` then `(a alpha+b beta+c gamma+d)/( c )gt 0`.

A

Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement - 1

B

Statement - 1 is True, Statement -2 is True, Statement - 2 is NOT a correct explanation for Statement - 1

C

Statement - 1 is True, Statement - 2 is False

D

Statement - 1 is False, Statement - 2 is True

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise MCQ (MULTIPLE CORRECT)|30 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION-I)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSIGNMENT -OBJECTIVE|84 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha,beta,gamma are the roots of the equation 2x^(3)-5x^(2)+3x-1=0, then (1)/(alpha beta)+(1)/(beta gamma)+(1)/(gamma alpha) is

Suppose (alpha,beta,gamma) lie on the plane 2x+y+z=1 and [alpha,beta,gamma][(1,9,1),(7,2,1),(8,3,1)]=[0,0,0] then alpha +beta^(2)+gamma^(2) = _____

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha,beta and gamma are the roots of x^(3)-x^(2)-1=0, then value of (1+alpha)/(1-alpha)+(1+beta)/(1-beta)+(1+gamma)/(1-gamma) is

If a line makes angles alpha,beta,gamma with the axes respectively tehn cos2alpha+cos2beta+cos2gamma= -2 b. -1 c. 1 d. 2

Let alpha,beta, gamma be three real numbers satisfying [(alpha,beta,gamma)][(2,-1,1),(-1,-1,-2),(-1,2,1)]=[(0,0,0)] . If the point A(alpha, beta, gamma) lies on the plane 2x+y+3z=2 , then 3alpha+3beta-6gamma is equal to

If alpha,beta,gamma are the zeros of the polynomial f(x)=ax^(3)+bx^(2)+cx+d, then (1)/(alpha)+(1)/(beta)+(1)/(gamma)=( a) (b)/(d)(b)(c)/(d)(c)(c)/(d)(d)(c)/(a)

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is