Home
Class 12
MATHS
Let vec(a)=2hati-hatj+hatk,vec(b)=hati+2...

Let `vec(a)=2hati-hatj+hatk,vec(b)=hati+2hatj-hatk` and `vec( c )=hati+hatj-2hatk` be three vectors. A vector in the plane of `vec(b)` and `vec( c )` whose projection on `vec(a)` is of magnitude `sqrt(2//3)` is

A

`2hati+3hatj-3vec(b)`

B

`2hati+3hatj+3hatk`

C

`-2hati-hatj+5hatk`

D

`2hati+hatj+5hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector \( \vec{r} \) that lies in the plane formed by vectors \( \vec{b} \) and \( \vec{c} \), and whose projection onto vector \( \vec{a} \) has a magnitude of \( \sqrt{\frac{2}{3}} \). ### Step 1: Define the vectors Given: - \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \vec{b} = \hat{i} + 2\hat{j} - \hat{k} \) - \( \vec{c} = \hat{i} + \hat{j} - 2\hat{k} \) ### Step 2: Express vector \( \vec{r} \) Since \( \vec{r} \) lies in the plane of \( \vec{b} \) and \( \vec{c} \), we can express \( \vec{r} \) as a linear combination of \( \vec{b} \) and \( \vec{c} \): \[ \vec{r} = \alpha \vec{b} + \beta \vec{c} \] Substituting the expressions for \( \vec{b} \) and \( \vec{c} \): \[ \vec{r} = \alpha (\hat{i} + 2\hat{j} - \hat{k}) + \beta (\hat{i} + \hat{j} - 2\hat{k}) \] \[ \vec{r} = (\alpha + \beta)\hat{i} + (2\alpha + \beta)\hat{j} + (-\alpha - 2\beta)\hat{k} \] ### Step 3: Calculate the projection of \( \vec{r} \) onto \( \vec{a} \) The projection of \( \vec{r} \) onto \( \vec{a} \) is given by: \[ \text{proj}_{\vec{a}} \vec{r} = \frac{\vec{r} \cdot \vec{a}}{|\vec{a}|^2} \vec{a} \] First, we need to compute \( \vec{r} \cdot \vec{a} \): \[ \vec{r} \cdot \vec{a} = (\alpha + \beta)(2) + (2\alpha + \beta)(-1) + (-\alpha - 2\beta)(1) \] Expanding this: \[ = 2(\alpha + \beta) - (2\alpha + \beta) - (\alpha + 2\beta) \] \[ = 2\alpha + 2\beta - 2\alpha - \beta - \alpha - 2\beta \] \[ = -\beta - \alpha \] ### Step 4: Calculate the magnitude of \( \vec{a} \) Next, we calculate \( |\vec{a}| \): \[ |\vec{a}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] Thus, \( |\vec{a}|^2 = 6 \). ### Step 5: Set up the equation for the magnitude of the projection We know the magnitude of the projection is \( \sqrt{\frac{2}{3}} \): \[ \left| \frac{\vec{r} \cdot \vec{a}}{|\vec{a}|} \right| = \sqrt{\frac{2}{3}} \] Substituting the values: \[ \left| \frac{-\beta - \alpha}{\sqrt{6}} \right| = \sqrt{\frac{2}{3}} \] Squaring both sides: \[ \frac{(-\beta - \alpha)^2}{6} = \frac{2}{3} \] Multiplying through by 6: \[ (-\beta - \alpha)^2 = 4 \] Taking the square root: \[ -\beta - \alpha = 2 \quad \text{or} \quad -\beta - \alpha = -2 \] This gives us two equations: 1. \( \beta + \alpha = -2 \) 2. \( \beta + \alpha = 2 \) ### Step 6: Solve for \( \beta \) in terms of \( \alpha \) From the first equation: \[ \beta = -2 - \alpha \] Substituting this into the expression for \( \vec{r} \): \[ \vec{r} = \alpha \vec{b} + (-2 - \alpha) \vec{c} \] ### Step 7: Substitute and simplify Substituting \( \beta \) into the expression for \( \vec{r} \): \[ \vec{r} = \alpha(\hat{i} + 2\hat{j} - \hat{k}) + (-2 - \alpha)(\hat{i} + \hat{j} - 2\hat{k}) \] This simplifies to: \[ \vec{r} = \alpha \hat{i} + 2\alpha \hat{j} - \alpha \hat{k} - 2\hat{i} - 2\hat{j} + 4\hat{k} - \alpha \hat{i} - \alpha \hat{j} + 2\alpha \hat{k} \] Combining like terms gives: \[ \vec{r} = (-2)\hat{i} + (2\alpha - 2 - \alpha)\hat{j} + (4 - \alpha + 2\alpha)\hat{k} \] \[ = -2\hat{i} + (\alpha - 2)\hat{j} + (4 + \alpha)\hat{k} \] ### Final Result The vector \( \vec{r} \) can be expressed in terms of \( \alpha \): \[ \vec{r} = -2\hat{i} + (\alpha - 2)\hat{j} + (4 + \alpha)\hat{k} \] You can choose any value for \( \alpha \) to get a specific vector in the plane of \( \vec{b} \) and \( \vec{c} \).
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION-I)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPREHENSION-II)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise ASSERTION - REASONING|8 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

If vec a=3hati-hatj+4hatk, vecb=2hati+3hatj-hatk and vec c=-5hati+2hatj+3hatk , then vec a.(vecb xx vec c) is

The vector vec(A)=6hati+9hatj-3hatkand vecB=2hati+3hatj-hatk are

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2hati +hatj - hatk and vec(c) = hati +3hatj - 2hatk then find vec(a) xx (vec(b) xx vec(c)) .

If vec(a) = hati - 2hatj - 3hatk, vec(b) = 2 hati - hatj - hatk and vec(c) = hati +3 hatj - 2hatk find (vec(a) xx vec(b)) xx vec(c)

If vec(OA)=2hati-hatj+hatk, vec(OB)=hati-3hatj-5hatk and vec(OC)=3hati-3hatj-3hatk then show that CB is perpendicular to AC.

Let veca=hati+2hatj +hatk, vec=hati-hatj+hatk and vecc=hati+hatj-hatk . A vector in the plane of veca and vecb whose projection on vecc is 1/sqrt(3) is (A) 4hati-hatj+4hatk (B) hati+hatj-3hatk (C) 2hati+hatj-2hatk (D) 4hati+hatj-4hatk

If veca =hati + hatj - hatk, vecb = 2hati + 3hatj + hatk and vec c = hati + alpha hatj are coplanar vector , then the value of alpha is :

If veca = 5 hati- 4 hatj + hatk, vecb =- 4 hati + 3 hatj - 2 hatkand vec c = hati - 2 hatj - 2 hatk, then evaluate vec c. (veca xx vecb)

The three vectors vecA=3hati-=2hatj+khat,vecB=hati-3hatj+5hatk and vec C=2hati+hatj-4hatk form

FIITJEE-MATHEMATICS TIPS-MCQ (MULTIPLE CORRECT)
  1. If z(1),z(2),z(3),…,z(n-1) are the roots of the equation z^(n-1)+z^(n-...

    Text Solution

    |

  2. If alpha is a root of the equation 2x(2x+1)=1, then the other root is

    Text Solution

    |

  3. Let vec(a)=2hati-hatj+hatk,vec(b)=hati+2hatj-hatk and vec( c )=hati+ha...

    Text Solution

    |

  4. If P(z(1)),Q(z(2)),R(z(3)) " and " S(z(4)) are four complex numbers re...

    Text Solution

    |

  5. The largest coefficient in the expansion of (4+3x)^(25) is

    Text Solution

    |

  6. Given that the 4th term in the expansion of [2+(3//8x)]^(10) has the m...

    Text Solution

    |

  7. If Deltar=|[2^(r-1),1/(r(r+1)),sin rtheta],[x, y, z],[2^n-1, n/(n+1),(...

    Text Solution

    |

  8. If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,...

    Text Solution

    |

  9. There are n locks and n matching keys. If all the locks and keys are t...

    Text Solution

    |

  10. The number of ways in which we can choose 2 distinct integers from 1 t...

    Text Solution

    |

  11. Let n be a positive integer with f(n) = 1! + 2! + 3!+.........+n! and ...

    Text Solution

    |

  12. If m and n are positive integers more than or equal to 2, mgtn, then (...

    Text Solution

    |

  13. A drawer contains red and black balls. When two balls are drawn at ran...

    Text Solution

    |

  14. If A, B, C and D are four points with position vectors 3hati, 3hatj, 3...

    Text Solution

    |

  15. If |(a,b,aalpha+b),(b,c,balpha+c),(a alpha+b,b alpha+c,0)|=0 then

    Text Solution

    |

  16. The equation x^3/4((log)2x)^(2+(log)2x-5/4)=sqrt(2) has (1989, 2M) at ...

    Text Solution

    |

  17. If first and (2n-1)^th terms of an AP, GP. and HP. are equal and the...

    Text Solution

    |

  18. The nature of the intersection of the set of planes: 2x-4y+2z=5,5x-y...

    Text Solution

    |

  19. Let PM be the perpendicualr from the point P(1, 2, 3) to x-y plane. If...

    Text Solution

    |

  20. The det Delta=|{:(d^2+r,de,df),(de,e^2+r,ef),(df,ef,f^2+r):}| is divis...

    Text Solution

    |