Home
Class 12
MATHS
Consider (1+sin theta+sin^(2)theta)^(n)=...

Consider `(1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r)(sin theta)^( r ), theta in R`.
`a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-…a_(2n)^(2)` is equal to

A

`a_(n)`

B

`a_(n)^(2)`

C

`2a_(n)^(2)`

D

`(a_(n))/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots - a_{2n}^2 \) given that \[ (1 + \sin \theta + \sin^2 \theta)^n = \sum_{r=0}^{2n} a_r (\sin \theta)^r. \] ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + \sin \theta + \sin^2 \theta)^n \). This can be expanded using the binomial theorem, which gives us a polynomial in \( \sin \theta \). 2. **Substituting \( \sin \theta \)**: To analyze the coefficients \( a_r \), we can substitute \( \sin \theta = x \) for simplicity: \[ (1 + x + x^2)^n = \sum_{r=0}^{2n} a_r x^r. \] 3. **Finding Coefficients**: The coefficients \( a_r \) represent the coefficients of \( x^r \) in the expansion of \( (1 + x + x^2)^n \). 4. **Using Symmetry**: We can observe that if we replace \( x \) with \( \frac{1}{x} \), we get: \[ (1 + \frac{1}{x} + \frac{1}{x^2})^n = x^{-2n} (x^2 + x + 1)^n. \] This shows that \( a_r = a_{2n - r} \) for \( r = 0, 1, \ldots, 2n \). 5. **Calculating the Desired Sum**: We need to compute: \[ a_0^2 - a_1^2 + a_2^2 - a_3^2 + \ldots - a_{2n}^2. \] Using the symmetry \( a_r = a_{2n - r} \), we can pair terms: \[ (a_0^2 - a_{2n}^2) + (a_1^2 - a_{2n-1}^2) + \ldots + (a_n^2 - a_n^2). \] Since \( a_n^2 \) cancels out, we are left with: \[ a_0^2 - a_{2n}^2 + a_1^2 - a_{2n-1}^2 + \ldots. \] 6. **Final Value**: The expression simplifies to \( a_n \), which is the coefficient of \( \sin^{2n} \theta \) in the original polynomial. Thus, the final result is: \[ \boxed{a_n}. \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - V)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - VI)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - III)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r) (sin theta)^( r ), theta in R . a_(n+1)+a_(n+2)+…+a_(2n-1) equals

Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n) a_(r)(sin theta)^( r ), theta in R . The value of a_(0)+2a_(1)+3a_(2)+…+(2n+1)a_(2n) is

If (1+x)^(2n)=sum_(r=0)^(2n)a_(r)x^(r) then the value of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+...+(a_(2n))^(2)=

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a_(1)-2a_(2)+3a_(3)-...-2na_(2n)=

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( 1+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to

(1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r)x^(r) then a_(2)+a_(4)+....+a_(12)=

If (1+x-2x^(2))^(6)=sum_(r=0)^(12)a_(r).x^(r) then a_(1)+a_(3)+......a_(11)

Given that (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+......+a_(2n)x^(2n) , find the values of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+....+a_(2n)^(2)