Home
Class 12
MATHS
Consider (1+sin theta+sin^(2)theta)^(n)=...

Consider `(1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n) a_(r)(sin theta)^( r ), theta in R`.
The value of `a_(0)+2a_(1)+3a_(2)+…+(2n+1)a_(2n)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_0 + 2a_1 + 3a_2 + \ldots + (2n+1)a_{2n} \) given that \[ (1 + \sin \theta + \sin^2 \theta)^n = \sum_{r=0}^{2n} a_r (\sin \theta)^r \] ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + \sin \theta + \sin^2 \theta)^n \). This can be expanded using the binomial theorem, and the coefficients \( a_r \) represent the coefficients of \( (\sin \theta)^r \) in this expansion. 2. **Identifying the Required Sum**: We need to find \( S = a_0 + 2a_1 + 3a_2 + \ldots + (2n+1)a_{2n} \). This can be rewritten using summation notation: \[ S = \sum_{r=0}^{2n} (r + 1) a_r \] 3. **Using a Generating Function**: To find \( S \), we can relate it to the derivative of the generating function. We can consider the function: \[ f(x) = (1 + x + x^2)^n \] where \( x = \sin \theta \). The coefficients \( a_r \) are the coefficients of \( x^r \) in this expansion. 4. **Differentiating the Function**: We differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = n(1 + x + x^2)^{n-1}(1 + 2x) \] This gives us the sum \( S \) when evaluated at \( x = \sin \theta \): \[ S = f'(1) = n(1 + 1 + 1)^{n-1}(1 + 2 \cdot 1) = n \cdot 3^{n-1} \cdot 3 = 3n \cdot 3^{n-1} \] 5. **Final Calculation**: Simplifying gives: \[ S = 3n \cdot 3^{n-1} = 3^n(n + 1) \] Thus, the value of \( a_0 + 2a_1 + 3a_2 + \ldots + (2n+1)a_{2n} \) is: \[ \boxed{(n + 1)3^n} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - V)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - VI)|3 Videos
  • MATHEMATICS TIPS

    FIITJEE|Exercise PARAGRAPH BASED (MULTIPLE CHOICE) (COMPERHENSION - III)|3 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r) (sin theta)^( r ), theta in R . a_(n+1)+a_(n+2)+…+a_(2n-1) equals

Consider (1+sin theta+sin^(2)theta)^(n)=sum_(r=0)^(2n)a_(r)(sin theta)^( r ), theta in R . a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-…a_(2n)^(2) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If (1+x)^(2n)=sum_(r=0)^(2n)a_(r)x^(r) then the value of a_(0)^(2)-a_(1)^(2)+a_(2)^(2)-a_(3)^(2)+...+(a_(2n))^(2)=

Let n be an odd integer.If sin n theta=sum_(r=0)^(n)b_(r)sin^(r)theta for all real theta is

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is odd , the value of sum_(r-1)^(2) a_(2r -1) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is