Home
Class 12
MATHS
The maximum value of determinant |{:(cos...

The maximum value of determinant `|{:(cos(alpha+beta),sin alpha,-cos alpha),(-sin(alpha+beta),cos alpha, sin alpha),(cos 2beta,sin beta, cos beta):}|` is ___________

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the determinant \[ D = \begin{vmatrix} \cos(\alpha + \beta) & \sin \alpha & -\cos \alpha \\ -\sin(\alpha + \beta) & \cos \alpha & \sin \alpha \\ \cos 2\beta & \sin \beta & \cos \beta \end{vmatrix} \] we will follow these steps: ### Step 1: Expand the determinant Using the property of determinants, we can expand \(D\) as follows: \[ D = \cos(\alpha + \beta) \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix} + \sin \alpha \begin{vmatrix} -\sin(\alpha + \beta) & \sin \alpha \\ \cos 2\beta & \cos \beta \end{vmatrix} - \cos \alpha \begin{vmatrix} -\sin(\alpha + \beta) & \cos \alpha \\ \cos 2\beta & \sin \beta \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} \cos \alpha & \sin \alpha \\ \sin \beta & \cos \beta \end{vmatrix} = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta) \] 2. For the second determinant: \[ \begin{vmatrix} -\sin(\alpha + \beta) & \sin \alpha \\ \cos 2\beta & \cos \beta \end{vmatrix} = -\sin(\alpha + \beta) \cos \beta - \sin \alpha \cos 2\beta \] 3. For the third determinant: \[ \begin{vmatrix} -\sin(\alpha + \beta) & \cos \alpha \\ \cos 2\beta & \sin \beta \end{vmatrix} = -\sin(\alpha + \beta) \sin \beta + \cos \alpha \cos 2\beta \] ### Step 3: Substitute back into the determinant Now substituting these back into \(D\): \[ D = \cos(\alpha + \beta) \cdot \cos(\alpha + \beta) + \sin \alpha (-\sin(\alpha + \beta) \cos \beta - \sin \alpha \cos 2\beta) - \cos \alpha (-\sin(\alpha + \beta) \sin \beta + \cos \alpha \cos 2\beta) \] ### Step 4: Simplify the expression After simplification, we will find that: \[ D = 2 \cos^2 \beta \] ### Step 5: Find the maximum value The maximum value of \(\cos^2 \beta\) is 1 (since \(\cos^2 \beta\) ranges from 0 to 1). Therefore, the maximum value of \(D\) is: \[ D_{\text{max}} = 2 \cdot 1 = 2 \] ### Final Answer Thus, the maximum value of the determinant is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS TIPS

    FIITJEE|Exercise NUMERICAL RASED QUESTIONS|24 Videos
  • MATHEMATICS

    FIITJEE|Exercise NUMERICAL DECIMAL BASED QUESTIONS|15 Videos
  • MATRICES

    FIITJEE|Exercise NUMERICAL BASED|3 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

The value of the determinant ,cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]| is equal

det[[ The value of ,cos(alpha+beta),-sin(alpha+beta),cos2 betasin alpha,cos beta,sin beta-cos alpha,sin alpha,cos beta]] is

Evaluate ,,,|cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha,cos beta,sin alpha sin beta,cos alpha]|

det[[cos alpha cos beta,cos alpha sin beta,-sin alpha-sin beta,cos beta,0sin alpha cos beta,sin alpha sin beta,cos alpha]]

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

cos alpha,-sin alpha,1sin alpha,cos alpha,1cos(alpha+beta),-sin(alpha+beta),1]|

(sin^(2)alpha-sin^(2)beta)/(sin alpha cos alpha-sin beta cos beta)=tan(alpha+beta)

If Delta = |(cos alpha,- sin alpha,1),(sin alpha,cos alpha,1),(cos (alpha + beta),- sin (alpha + beta),1)| , then

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

FIITJEE-MATHEMATICS TIPS-NUMERICAL DECIMAL BASED QUESTIONS
  1. If x, y, z are positive real numbers, then minimum value of (z)/(x+y)+...

    Text Solution

    |

  2. If the difference of the roots of the equation x^(2)-5x+6=0 is same as...

    Text Solution

    |

  3. The minimum value of 'a' for which a^(2)x^(2)+(2a-1)x+1 is non-negativ...

    Text Solution

    |

  4. The minimum value of the expression [3x^(2)+4x+5] (where [.] greatest ...

    Text Solution

    |

  5. Let lambda be real. If. The origin and the complex roots of 2z^(2)+2z+...

    Text Solution

    |

  6. The equation |z-i|+|z+i|=k, k gt 0 can represent an ellipse, if k=

    Text Solution

    |

  7. For |z-1|=1, i tan(("arg"(z-1))/(2))+(2)/(z) is equal to

    Text Solution

    |

  8. The sum of the rational terms in the expansion of (sqrt(2)+ root(5...

    Text Solution

    |

  9. Find out the sum of the coefficients in the expansion of the binomial ...

    Text Solution

    |

  10. A fair coin is tossed 100 times. The probability of getting tails an ...

    Text Solution

    |

  11. The probabilities of two events are 0.25 and 0.50. The total probabili...

    Text Solution

    |

  12. Let A=[{:(x^(2),6,8),(3,y^(2),9),(4,5,z^(2)):}],B=[{:(2x,3,5),(2,2y,6)...

    Text Solution

    |

  13. The number of non-zero diagonal matrices of order 4 satisfying A^(2)=A...

    Text Solution

    |

  14. Find the following system of equations is consistent, (a+1)^3x+(a+2...

    Text Solution

    |

  15. The maximum value of determinant |{:(cos(alpha+beta),sin alpha,-cos al...

    Text Solution

    |

  16. If x+y+z=10, where x,y,z in N. Find the number of solutions of triplet...

    Text Solution

    |

  17. The figures 4, 5, 6, 7, 8 are written in every possible order. The num...

    Text Solution

    |

  18. If a^(2)+b^(2)+c^(2)=1 where, a,b,cin R, then the maximum value of (4a...

    Text Solution

    |

  19. Let vec a , vec b a n d vec c be three vectors having magnitudes 1...

    Text Solution

    |

  20. A plane passing through (1, 1, 1) cuts positive direction of co-ordin...

    Text Solution

    |