Home
Class 12
MATHS
lim(x rarr oo)(sqrt(x^(2)+1)-sqrt(x^(2)-...

lim_(x rarr oo)(sqrt(x^(2)+1)-sqrt(x^(2)-1))=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^(2)-1))

lim_(x rarr oo)x{sqrt(x^(2)+1)-sqrt(x^(2)-1))}

consider two functions f(x)=lim_(x rarr oo)(cos((x)/(sqrt(n))))^(n) and g(x)=-x^(4b), where b=lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-1))

Evaluate: lim_(x rarr oo)(sqrt(3x^(2)-1)-sqrt(2x^(2)-1))/(4x+3)

Prove that: lim_(x rarr oo)x(sqrt(x^(2)+1)-sqrt(x^2-1))) = 1

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^2+1))

Consider two function f(x)=lim_(n rarr oo)((cos x)/(sqrt(n)))^(n) and g(x)=-x^(4b) where b=lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))* then f(x) is and number of solutions of f(x)+g(x)=0 is

lim_(x rarr oo)((sqrt(x^(2)+5)-sqrt(x^(2)-3))/(sqrt(x^(2)+3)-sqrt(x^(2)+1)))

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to