Home
Class 11
MATHS
If a+i b=((x+i)^2)/(2x^2+1), prove that ...

If `a+i b=((x+i)^2)/(2x^2+1),` prove that `a^2+b^2=((x^2+1)^2)/((2x^2+1)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+ib=((x+i)^(2))/(2x^(2)+1), prove that a^(2)+b^(2)=((x^(2)+1)^(2))/((2x^(2)+1)^(2))

If a+ib=((x+i)^(2))/(2x^(2)+1) prove that a^(2)+b^(2)=((x^(2)+1)^(2))/((2x^(2)+1)^(2))

If ((x+i)^(2))/(3x+2)=a+ib, then prove that ((x^(2)+1)^(2))/((3x+2)^(2))=a^(2)+b^(2)

If x+iy=sqrt((1+i)/(1-i)), prove that x^(2)+y^(2)=1

If x+iy=(1+2i)/(2+i) prove that x^(2)+y^(2)=1

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

If y=(cot^(-1)x)^(2), prove that y_(2)(x^(2)+1)^(2)+2x(x^(2)+1)y_(1)=2

I=int(1-x^(2))/(x(1-2x))dx

If y=(tan^(-1)x)^(2), then prove that (1+x^(2))^(2)y_(2)+2x(1+x^(2))y_(1)=2