Home
Class 12
MATHS
" Prove that "2tan^(-1)(1)/(2)+tan^(-1)(...

" Prove that "2tan^(-1)(1)/(2)+tan^(-1)(1)/(7)=tan^(-1)(31)/(17)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 2"tan"^(-1)(1)/(2) +"tan"^(-1)(1)/(7) ="tan"^(-1)(31)/(17) .

Prove that 2 tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Prove that 2tan^(-1)(1/2)-tan^(-1)(1/4)=tan^(-1)(13/16)

Show that 2tan^(-1)(1/2) + tan^(-1)(1/7) = tan^(-1)(31/17)

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

Prove that 2tan^(-1)((1)/(2))+tan^(-1)((1)/(7))=sin^(-1)((31)/(25sqrt(2)))

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)=tan^(-1)(7/9)

Prove that 2tan^(-1)((1)/(2))=tan^(-1)((4)/(3))

Prove that 2tan^(-1)""(1)/(5)+tan^(-1)""(1)/(8)=tan^(-1)""(4)/(7)