Home
Class 11
MATHS
f(x)=(x^(2)-1)|x^(2)-x-2|+sin|x|...

f(x)=(x^(2)-1)|x^(2)-x-2|+sin|x|

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of f(x)=(x^(2)-1)|x^(2)-x-2|+sin(|x|)

The number of points of non-differentiability of the function f(x)=(x^(2)-1)|x^(2)-x-2|+sin(|x|)+[(x^(2))/(2x^(2)+1)] is (where [.] is greatest integer function)

Number of points where the function f(x)=(x^(2)-1)|x^(2)-x-2|+sin(|x|) is not differentiable,is: (A) 0 (B) 1 (C) 2 (D) 3

Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) is not differentiable, is:

Number of points where the function f(x)=(x^2-1)|x^2-x-2| + sin(|x|) is not differentiable, is: (A) 0 (B) 1 (C) 2 (D) 3

Discuss the differentiability of f(x)=(x^2-1)|x^2-x-2|+sin(|x|)dot

Discuss the differentiability of f(x)=(x^2-1)|x^2-x-2|+sin(|x|)dot

Discuss the differentiability of f(x)=(x^2-1)|x^2-x-2|+sin(|x|)dot

If f(x)=|(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x)| then the maximum value of f(x) is