Home
Class 11
MATHS
If the roots of the equation a(b-c)x^2+b...

If the roots of the equation `a(b-c)x^2+b(c-a)x+c(a-b)=0` are equal, show that `2//b=1//a+1//cdot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0

If the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal show that 1/a,1/b,1/c are in A.P.

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal,then prove that 2b=a+c

if the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal then show that (2)/(b)=(1)/(a)+(1)/(c)

if the roots of the equation a(b-c)x^(2)+b(c-a)x+c(a-b)=0 are equal then show that (2)/(b)=(1)/(a)+(1)/(c)

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal then a,b,c will be in

If the roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 be equal prove that a,b,c are in H.P.

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then