Home
Class 12
MATHS
बिंदु (2,5,-3) की समतल vecr.(6hati - 3h...

बिंदु (2,5,-3) की समतल `vecr.(6hati - 3hatj + 2hatk)= 4` से दुरी ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the distance of a point (2,5,-3) from the plane vecr.(6hati-3hatj+2hatk)=4.

Find the distance of a point (2, 5, -3) from the plane vecr.(6hati-3hatj+2hatk)=4

Find the distance of a point (2,5,-7) from the plane vecr.(6hati-3hatj+2hatk)=4

Find the distance of a point (2,5,-3) from the plane vecr.(6hati-3hatj+2hatk)=5

The line of intersection of the planes vecr . (3 hati - hatj + hatk) =1 and vecr. (hati+ 4 hatj -2 hatk)=2 is:

The angle between the line vecr=(hati+hatj-3hatk)+lambda(2hati+2hatj+hatk) and the plane vecr.(6hati-3hatj+2hatk)=5 , is

Find the angle between the line vecr = (2hati+hatj-hatk)+lambda(2hati+2hatj+hatk) and the plane vecr.(6hati-3hatj+2hatk)+1=0 .

Find the angle between the line vecr = (2hati+hatj-hatk)+lambda(2hati+2hatj+hatk) and the plane vecr.(6hati-3hatj+2hatk)+1=0 .

The acute angle between the lines vecr=(4hati-hatj)+5(2hati+hatj-3hatk) and vecr=(hati-hatj+2hatk)+t(hati-3hatj+2hatk) is (A) (3pi)/2 (B) pi/3 (C) (2pi)/3 (D) pi/6