Home
Class 12
MATHS
Find the sum to infinite terms of the se...

Find the sum to infinite terms of the series `tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+"........."+tan^(-1)((2^(n-1))/(1+2^(2n-1)))+"......"`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series : (tan^(-1))(1)/(3)+(tan^(-1))(2)/(9)+...+(tan^(-1))(2^(n-1))/(1+2^(2n-1))+......oo

Find the sum of the series : tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo

Find the sum of the series : tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo

Find the sum of the series : tan^- 1(1/3)+tan^- 1(2/9)+....+tan^- 1((2^(n-1))/(1+2^(2n-1)))+...... oo

Find the sum of the series : (tan^- 1)1/3+(tan^- 1)2/9+....+(tan^- 1)(2^(n-1))/(1+2^(2n-1))+...... oo

Find the sum of the series tan^(-1)((1)/(2))+tan^(-1)((1)/(2))+tan^(-1)((1)/(18))+tan^(-1)((1)/(32))+

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

The sum of the infinite terms of the series "tan"^(-1)((1)/(3))+ "tan"^(-1)((2)/(9)) + tan^(-1)((4)/(33)) + .... is equal to (pi)/(n) The value of n is:

The sum to infinite terms of the series tan^(-1)((2)/(1-1^(2)+1^(4)))+tan^(-1)((4)/(1-2^(2)+2^(4)))+tan^(-1)((6)/(1-3^(2)+3^(4)))+

tan^(-1)((3)/(n))+tan^(-1)((4)/(n))=(pi)/(2)