Home
Class 12
MATHS
Let f(k)=k/2009 and g(k)=(f^4(k))/((1-f(...

Let `f(k)=k/2009` and `g(k)=(f^4(k))/((1-f(k))^4+(f(k))^4)` then the sum `sum_(k=0)^2009g(k)` is equal:

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(k)=(k)/(2009) and g(k)=(f^(4)(k))/((1-f(k))^(4)+(f(k))^(4)) then the sum sum_(k=0)^(2009)g(k) is equal:

The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to

Let f(n)=(k=1)?^(n)k^(2)(nC_(k))^(2) then the value of f(5) equals

For each positive integer n , let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)dot Then sum_(k=1)^(2009)f(K) is equal to 335 (b) 336 (c) 331 (d) 333

For each positive integer n, let f(n+1)=n(-1)^(n+1)-2f(n) and f(1)=(2010)* Then sum_(k=1)^(2009)f(K) is equal to 335(b)336(c)331(d)333

Let f(n)=sum_(k=-n)^(n)(cot^(-1)((1)/(k))-tan^(-1)(k)) such that sum_(n=2)^(10)(f(n)+f(n-1))=a pi then find the value of (a+1) .

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals

If f(n)=prod_(i=2)^(n-1)log_i(i+1) , the value of sum_(k=1)^100f(2^k) equals