Home
Class 9
MATHS
z-8b-64b^(2)quad 20.x^(2)-y^(2)+6y-9...

z-8b-64b^(2)quad 20.x^(2)-y^(2)+6y-9

Promotional Banner

Similar Questions

Explore conceptually related problems

There are two circles whose equation are x^(2)+y^(2)=9 and x^(2)+y^(2)-8x-6y+n^(2)=0,n in Z. If the two circles have exactly two common tangents,then the number of possible values of n is 2 (b) 8 (c) 9 (d) none of these

The equation of the circle touching Y-axis at (0,3) and making intercept of 8 units on the axis (a) x^(2)+y^(2)-10x-6y-9=0 (b) x^(2)+y^(2)-10x-6y+9=0 (c) x^(2)+y^(2)+10x-6y-9=0 (d) x^(2)+y^(2)+10x+6y+9=0

Factorize: (y-x)a+(x-y)b9(z-2b)^(2)+6(2b-a)(x-2y)^(2)-4x+8y2a+6b-3(a+3b)^(2)

If a/(y+z) = b/(z + x) = c/(x+y) , then prove that (a(b-c))/(y^(2)-z^(2)) = (b(c-a))/(z^(2)-x^(2)) = (c(a-b))/(x^(2)-y^(2)) .

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]

Let vertices of the triangle ABC is A(0,0),B(0,1) and C(x,y) and perimeter is 4 then the locus of C is : (A)9x^(2)+8y^(2)+8y=16(B)8x^(2)+9y^(2)+9y=16(C)9x^(2)+9y^(2)+9y=16(D)8x^(2)+9y^(2)-9x=16

Factorize: 9-a^(6)+2a^(3)b^(3)-b^(6)x^(16)-y^(16)+x^(8)+y^(8)(p+q)^(2)-(a-b)^(2)+p+q-a+b

Factorize: (i)9-a^6+2a^3b^3-b^6 (ii)x^(16)-y^(16)+x^8+y^8