Home
Class 9
MATHS
" (i) "(4)/(7)sqrt(147)+(3)/(8)sqrt(192)...

" (i) "(4)/(7)sqrt(147)+(3)/(8)sqrt(192)-(1)/(5)sqrt(75)

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify. (4)/(7)sqrt(147)+(3)/(8)sqrt(192)-(1)/(5)sqrt(75)

Simplify : 4/7sqrt(147)+3/8sqrt(192)-1/5sqrt(75)

Simplify: 4/7sqrt(147)+3/8sqrt(192)-1/5sqrt(75)

sqrt(147) - sqrt(75) =

Prove that (i) (1)/(3+sqrt(7)) + (1)/(sqrt(7)+sqrt(5))+(1)/(sqrt(5)+sqrt(3)) +(1)/(sqrt(3)+1)=1 (ii) (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))+(1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7)) +(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8) + sqrt(9)) = 2

Evaluate : (1)/(3-sqrt(8)) -(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2).

4sqrt(3)-7sqrt(12)+2sqrt(75)=

(1)/(sqrt(9)-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-sqrt(4))=?

Simplify sqrt(192)+(sqrt(48))/(2)-sqrt(75)