Home
Class 11
MATHS
x1a n dx2 are the roots of a x^2+b x+c=0...

`x_1a n dx_2` are the roots of `a x^2+b x+c=0a n dx_1x_2<0.` Roots of `x_1(x-x_2)^2+x_2(x-x_1)^2()_()=0` are a. real and of opposite sign b. negative c. positive d. none real

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

True or false The equation 2x^2+3x+1=0 has an irrational root. If a

If +-2,quad 3 are the roots of ax^(4)+bx^(3)+cx^(2)+dx+e=0 then the roots of a(x-1)^(3)+b(x-1)^(2)+c(x-1)+d=0

int x ^ (2n-1) cos x ^ (n) dx

LetI_(1)=int_(0)^(n)[x]dx and I_(2)=int_(0)^(n){x}dx where [x] and {x} are integral and fractionalparts of x and n in N-{1}. Then (I_(1))/(I_(2)) is equal to

Find the angle of intersection of the following curves : y^2=xa n dx^2=y y=x^2a n dx^2+y^2=20 2y^2=x^3a n dy^2=32 x x^2+y^2-4x-1=0a n dx^2+y^2-2y-9=0 (x^2)/(a^2)+(y^2)/(b^2)=1a n dx^2+y^2=a b x^2+4y^2=8a n dx^2-2y^2=2 x^2=27ya n dy^2=8x x^2+y^2=2xa n dy^2=x y=4-x^2a n dy=x^2

Differentiate the following with respect of x:a_(0)x^(n)+a_(1)x^(n-1)+a_(2)x^(n-2)++a_(n-1)x+a_(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

int_( then the value of n is )^( If )dx=((x+sqrt(1+x^(2)))^(n))/(n)+C

If m gt 0, n gt 0 , the definite integral l=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx depends upon the vlaues of m and n and is denoted by beta(m,n) , called the beta function. E.g. int_(0)^(1)x^(4)(1-x)^(5)dx=int_(0)^(1)x^(5-1)(1-x)^(6-1)dx=beta(5, 6) and int_(0)^(1)x^(5//2)(1-x)^(-1//2)dx=int_(0)^(1)x^(7//2-1)(1-x)^(1//2-1)dx=beta((7)/(2),(1)/(2)) . Obviously, beta(n, m)=beta(m, n) . If int_(0)^(n)(1-(x)/(n))^(n)x^(k-1)dx=R beta(k, n+1) , then R is equal to